

XMC-7A200CC User-Configurable Conduction-Cooled Artix®-7 FPGA Modules C€ ®ROHS

XMC module with PCIe interface ◆ Logic-optimized Artix-7 FPGA ◆ Conduction-Cooled

Description

Acromag's XMC-7A200CC modules feature a high-performance user-configurable Xilinx® Artix®-7 FPGA enhanced with high-speed memory and a high-throughput serial bus interface. The result is a powerful and flexible I/O processor module that is capable of executing custom instruction sets and algorithms.

The logic-optimized FPGA is well-suited for a broad range of applications. Typical uses include hardware simulation, communications, in-circuit diagnostics, military servers, signal intelligence, and image processing.

The rear I/O provides an 8-lane high-speed serial interface on the P16 XMC port for customer-installed soft cores. P16 also supports 34 SelectIO channels. The P4 port adds another 60 SelectIO and global clock lines. SelectI/O signals are Artix-7 FPGA I/O pins that support single-ended I/O (LVCMOS, HSTL, SSTL) and differential I/O standards (LVDS, HT, LVPECL, BLVDS, HSTL, SSTL)

With Acromag's Artix-7 FPGA modules, you can greatly increase DSP algorithm performance for faster throughput using multiple channels and parallel hardware architectures. Free up CPU cycles by offloading algorithmic-intensive tasks to the FPGA co-processor.

These modules are ideal for high-performance customized embedded systems. Optimize your system performance by integrating high-speed programmable logic with the flexibility of software running on MicroBlaze™ soft processors.

Acromag's Engineering Design Kit provides software utilities and example VHDL code to simplify your program development and get you running quickly. A JTAG interface enables on-board debugging. Additional Xilinx tools help finish your system faster. Maximize FPGA performance with Vivado® or ISE® Design Suite. And with ChipScope™ Pro tools, you can rapidly debug logic and serial interfaces

Key Features & Benefits

- Reconfigurable Xilinx Artix-7 FPGA with 215K logic cells
- 128M x 64-bit DDR3 SDRAM
- 32M x 16-bit parallel flash memory for MicroBlaze FPGA program code storage
- 4-lane high-speed serial interface on rear P15 connector for PCle Gen 1/2 (standard), Serial Rapidl/O, 10Gb Ethernet, Xilinx Aurora
- 8-lane high-speed interfaces on rear P16 connector for customer-installed soft cores
- 60 Selectl/O or 30 LVDS pairs plus 2 global clock pairs direct to FPGA via rear P4 port
- 34 Selectl/O or 17 LVDS pairs plus 2 global clock pairs direct to FPGA via rear P16 port
- DMA support provides data transfer between system memory and the on-board memory
- Support for Xilinx ChipScope[™] Pro interface
- Extended temperature conduction-cooled

XMC-7A200 CC User-Configurable Conduction-Cooled Artix-7 FPGA Modules

Performance Specifications

FPGA

FPGA device

Xilinx Artix-7 FPGA

Model XC7A200T FPGA with 215,360 logic cells and 740 DSP48E1 slices.

FPGA configuration

Download via JTAG or flash memory.

Example FPGA program

IP integrator block diagram provided for bus interface, front & rear I/O control, and SDRAM memory interface controller. See EDK kit.

I/O Processing

Rear high-speed I/O

12 high-speed serial lanes.

x4 lanes via P15 and x8 lanes via P16.

Rear user I/O

P16: 17 LVDS pairs (34 LVCMOS), 2 global clock pairs. P4: 30 LVDS pairs (60 LVCMOS), 2 global clock pairs.

■ Engineering Design Kit

Provides user with basic information required to develop a custom FPGA program. Kit must be ordered with the first purchase of a XMC-7 series module (see www.acromag.com for more information).

XMC Compliance

Complies with ANSI/VITA 42.0 specification for XMC module mechanicals and connectors.

Complies with ANSI/VITA 42.3 specification for XMC modules with PCI Express interface.

Electrical/Mechanical Interface: Single-Width Module.

Electrical

XMC PCIe bus interface (P15 and P16)

One 114-pin male connector (Samtec ASP-103614-05 or equivalent).

P15 primary XMC connector

4 differential pairs (PCIe standard, Serial RapidIO, 10-Gigabit Ethernet, or Xilinx Aurora). JTAG.

System Management (XMC provides hardware definition information read by an external controller using IPMI commands and I2C serial bus transactions.)

3.3V power: 4 pins at 1A/pin.

3.3V auxiliary power: 1 pin, powers volatile memory to store the bitstream encryption key.

Variable power (5V or 12V): 8 pins at 1A per pin.

P16 XMC connector

8 differential pairs (PCle, Serial RapidlO, or Xilinx Aurora).

17 LVDS pairs or 34 Selectl/O signals (differential pairs grouped per VITA 46.0 X38s).

2 global clock pairs.

Vcco pins are powered by 2.5V and support the 2.5V VO standards.

P4 PMC rear I/O connector

64-pin female receptacle header (AMP 120527-1 or equivalent).

64 I/O connections (30 LVDS pairs plus two global clocks).

Vcco pins powered by 2.5V and support the 2.5V I/O standards

Environmental

Operating temperature

XMC-7A200CC-LF: Conduction-cooled, -40 to 75°C.

Storage temperature

-55 to 125°C.

Relative humidity

5 to 95% non-condensing.

Power

3.3V (±5%): 7W typical. 12V (±5%): 2W typical. 3.3V AUX (±5%): 57µW

MTBF

Contact the factory.

Ordering Information

NOTE: XMC-7KA-EDK is required to configure FPGA.

XMC Modules

Go to on-line ordering page >

XMC-7A200CC-LF

User-configurable Artix-7 FPGA, 215k logic cells, conduction-cooled

Software

For more information, see www.acromag.com.

XMC-7KA-EDK

Engineering Design Kit (one kit required)

PMCSW-API-VXW

VxWorks® 32-bit software support package

PCISW-API-WIN

Windows® DLL software support package

PCISW-API-LNX

Linux® support (website download only)

