

your reliable partner

ROBA®-slip hubs

ROBA® – a Well-known Trade Name

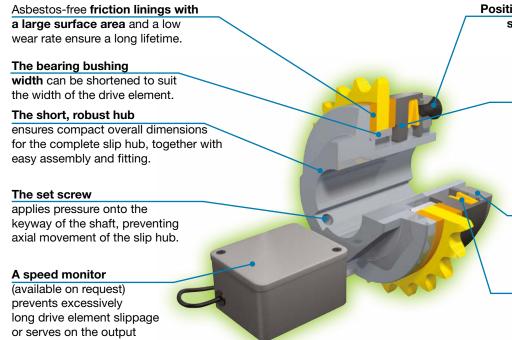
ROBA®-slip hub the load-holding, frictionally-locking safety clutch

ROBA® is a trade name which has been the symbol of quality and experience in clutch construction for decades. A comprehensive range of torque limiters has originated from the robust jaw clutch (ROBA®-safety slip clutch).

ROBA®-slip hub devices are simple to use. The torque table makes it possible to set the torque according to a scale and offers considerably simplified installation. ROBA®-slip hub devices are reasonably-priced drive elements which protect machinery and equipment against costly damage, and against downtimes resulting from time-consuming repairs. As a result of their high-strength materials and careful manufacture with optimum utilisation of space, ROBA®-slip hub devices are smaller than similar clutches on the market. Twelve different designs and combinations are available. We have a solution for all drive units. However, if any of your wishes remain unanswered, please contact us.

ROBA® stands for: trust in safety.

Application


ROBA®-slip hub devices are used as overload protection for machine drives with chain sprockets, toothed wheels or pulleys. The ROBA®- slip hub is used wherever expensive and sensitive motors, gearboxes or machinery components need to be protected against overloads. If overload occurs, the drive element slips and, therefore, limits the torque. ROBA®-slip hub devices are used in packing machines, transport systems and equipment, construction machinery, textile machinery, agricultural machinery, mechanical handling equipment, feed units, loading systems, in equipment for the chemical industry and in machinery and equipment in general industrial engineering.

Design

Despite their simple construction, ROBA®-slip hub devices are high-quality machine components. The ROBA®-slip hub is fully machined and phosphated and, therefore, protected against rust. It is a fully enclosed construction, so that dirt is prevented from reaching internal components.

The ROBA®-slip hub, which is a rotating component, fits very easily into all drive systems as a result of its smooth construction. It is particularly suitable for attachment to the outside of machines and for those systems which must be kept clean easily, e.g. in the food industry.

ROBA®-slip hub devices are designed in such a way that they can be adapted very easily to the most varied of working conditions, e.g. high slipping frequency and low torque or low friction work and extremely high torque, as well as all intermediate stages of torque and friction work, and the desired lifetime.

Positive-locking torque adjustment securement via the lock washer and the locking screw to prevent the adjusting nut loosening

Four wide claws

engage in the keyways of the hub and guarantee reliable torque transmission even under impact loads or reversing load conditions.

Adjusting nut together with a graduation scale for simple torque adjustment and wear re-adjustment

Cup springs with low characteristic curve keep torque reduction due to wear low. Alternative spring layerings ensure a wide torque range per size.

to monitor the chain drive against breakage.

Fig. 1 Type 100.110

Functional Description

Part List Sizes 0 - 5

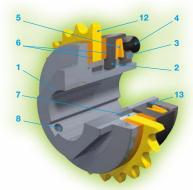


Fig. 2 Type 100.110, Sizes 0 - 5

7. Bearing bushing8. Adjusting screw12. Chain sprocket13. Lock washer

1. Hub

Thrust washer
 Adjusting nut 0
 Locking screw
 Cup springs
 Friction linings

Part List Sizes 6 - 12

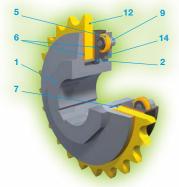
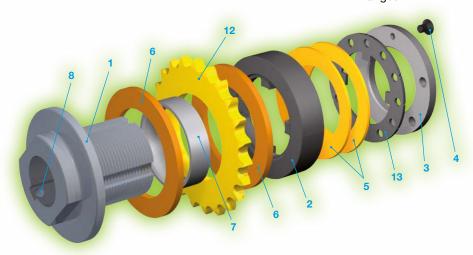


Fig. 3 Type 100.110, Sizes 6 - 12

- 1. Hub
- 2. Thrust washer
- 5. Cup springs
- 6. Friction linings
- 7. Bearing bushing
- 9. Cup spring supporting bolt
- 12. Chain sprocket
- 14. Adjusting nut 0

Contents


	Page
ROBA®-slip hubs	
Torque range: 2 to 50.000 Nm	
in special design up to 200.000 Nm	
Description	3
Summary of Constructional Designs	4
Data Sheets	
ROBA®-slip hub standard	6
ROBA®-slip hub with standard chain sprocket	8
ROBA®-slip hub with rustproof friction lining	9
ROBA®-Co-Pro®	10
ROBA®-clamp	11
ROBA®-min	12
ROBA®-max	13
ROBA®-slip hub with needle bearing	14
ROBA®-lastic – torsionally flexible	15
ROBA®-lastic – positive-locking	16
ROBA®-lastic – highly flexible	17
ROBA®-LD – torsionally rigid	18
Technical Explanations	19
Torque Adjustment	21
Installation Examples	22

Function

The drive element (12) (chain sprocket or V-belt disk) is placed on the bushing (7) as shown in Figure 2 and clamped between the friction linings (6) with the aid of the thrust washer (2), the cup springs (5) and the adjusting nut (3) with the lock washer (13). The more powerfully the cup springs (5) are compressed by the adjusting nut (3), the higher the torque at which the drive element (12) slips. The precise torque adjustment operation is described on page 21.

It should also be noted that the difference in torque after friction lining wear is lowest with single cup spring layering and highest with triple cup spring layering. In addition, a torque adjustment in the uppermost quarter of the maximum torques gives a particularly even adjustment (the spring characteristic curve has its smallest increase in this area). Other friction linings are also available for special applications (see further details on page 19).

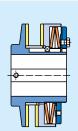
The ROBA®-slip hub is available for three different torque ranges.

Fig. 4 Type 100.110, Sizes 0 – 5

Rule of thumb:

ROBA®-slip hub for **high friction** work and low torque (single-layer cup springs, single contact force).

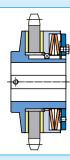
ROBA®-slip hub for medium friction work and higher torque (double-layer cup springs, double contact force).


ROBA®-slip hub for **low friction work** and very high torque (triple-layer cup springs, triple contact force).

Please observe the operating speed or slipping speed (see Explanation on page 19)!

ROBA®-slip hubs Summary of Constructional Designs

ROBA®- slip hub standard

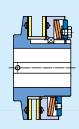

Torque: 2 to 50.000 Nm

Sizes 0 to 12 Type 100.___ Safety clutch for machine drives requiring protection against overload.

When the preset overload torque is reached, the drive element slips, preventing damage to the drive system.

Page 6

ROBA®-slip hub with standard chain sprocket

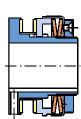


Torque: 6 to 1.400 Nm

Sizes 01 to 5 Type 100.___ Slip hub complete with chain sprocket as a reasonablypriced drive element with a high safety factor for all chain drives

Page 8

ROBA®-slip hub with rustproof friction linings



Torque: 6 to 2.400 Nm

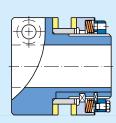
Sizes 01 to 6 Type 100._2_ For drives in open air installations, particularly wet ambient conditions or for long downtimes

Page 9

ROBA®-Co-Pro®

Torque: 5 to 1.500 Nm

Sizes 30 to 50 Type 1000._1000 Type 1010._1000 Compact, high performance safety clutch

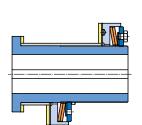

Hub designs:

 Design M
 Type 1000._1000

 Design L
 Type 1010._1000

Page 10

ROBA®-clamp


Torque: 2 to 400 Nm

Sizes 0 to 2 Type 106.___

- For shaft ends without a keyway. Enables easy and fast shaft installation.
- The keyless slip hub is better suited to larger shafts than the standard design.

Page 11

ROBA®-min

Torque: 8 to 1.100 Nm

Sizes 1 to 5
Type 121.___
Type 123.___

- For drive elements with particularly small diameters and very large installation widths
- Larger installation width than Type 100, but only capable of transmitting lower torques

Hub designs:

short hub Type 121.___ long hub Type 123.___

Page 12

ROBA®-slip hubs Summary of Constructional Designs

ROBA®-max Torque: For drive elements (chain sprockets, toothed wheels etc.) 2 to 2.100 Nm with particularly large installation widths (e.g. double-row chain sprockets). Same product width as Type 123, but is capable of transmitting higher torques. Sizes 0 to 5 Type 170.___ Page 13 ROBA®-slip hub Torque: For drive elements with larger radial loads, a higher 9 to 1.260 Nm slipping frequency and increased shaft run-out accuracy with needle bearing (e.g. toothed wheels) Sizes 1 to 5 Type 160.___ Page 14 ROBA®-lastic -Torsionally flexible safety clutch for connection of two Torque: 2 to 1.400 Nm torsionally The flexible coupling component is designed as a simple flexible plug-in coupling. Sizes 0 to 5 Type 135.___ Page 15 Positive-locking, torsionally flexible safety clutch for ROBA®-lastic -Torque: 240 to 50.000 Nm connection of two shafts positive-locking Flexible coupling component is designed as a torsionally flexible plug-in coupling. Sizes 6 to 12 Type 132._ _0 Page 16 ROBA®-lastic -Highly flexible safety clutch for connection of two shafts Torque: 2 to 2,400 Nm Flexible coupling component with high damping highly flexible characteristics Sizes 0 to 6 Type 131.___ ROBA®-LD -Torsionally rigid safety clutch for connection of two shafts Torque: 14 to 6.800 Nm Flexible coupling component is designed as a torsionally torsionally rigid flexible all-steel coupling. Type 133 is designed with a rigid short, torsionally rigid coupling. Type 134 is designed with a Sizes 1 to 8 long, torsionally rigid coupling.

Type 133.___

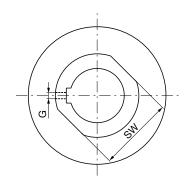
Type 134.___

Sleeve Designs: short sleeve

long sleeve

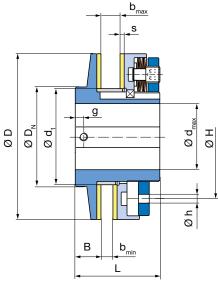
Type 133.___ Type 134.___

Page 18



ROBA®-slip hub standard

Type 100.___ Sizes 0 to 12


Sizes 0 to 5 Types 100.1_ _, 100.2_ _ and 100.3_ _

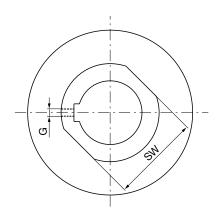


Fig. 5 Type 100.110

Sizes 6 to 12 Types 100.1_ _ and 100.2_ _

Fig. 6 Type 100.110

ROBA®-slip hub standard

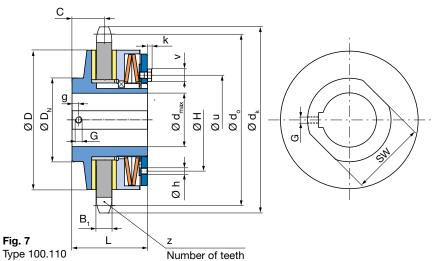
We reserve the right to make dimensional and constructional alterations.

Tachnical Data	C: 0 to 5\						Size			
Technical Data (Sizes U to 5)			0	01	1	2	3	4	5
	Type 100.11_	M _G	[Nm]	2 - 10	6 - 30	14 - 70	26 - 130	50 - 250	110 - 550	140 - 700
Limit torques	Type 100.21_	M _G	[Nm]	10 - 20	30 - 60	70 – 130	130 - 250	250 - 550	550 - 1100	700 – 1400
for overload	Type 100.3	M _G	[Nm]	18 – 30	60 - 90	130 – 200	250 - 400	-	-	-
	Type 100.3_2	M _G	[Nm]	-	-	-	-	550 - 800	1100 – 1600	1400 – 2100
Operating speed 1)		n _{max}	[rpm]	8500	6600	5600	4300	3300	2700	2200
Weight (pilot bored)			[kg]	0,3	0,6	0,9	1,6	3,1	5,4	9,0

Technical Date	C: C t- 40\						Size			
Technical Data	Sizes 6 to 12)			6	7	8	9	10	11	12
Limit torques	Type 100.11_	M _G	[Nm]	240-1200	400-2000	680-3400	1200-6000	2000-10000	3400-17000	5000-25000
for overload	Type 100.21_	M _G	[Nm]	1200-2400	2000-4000	3400-6800	6000-12000	10000-20000	17000-34000	25000-50000
Operating speed 1)		n _{max}	[rpm]	1900	1600	1300	1100	920	780	690
Weight (pilot bored)			[kg]	12,4	21,2	30,7	79	125	179	278

Dim. [mm]		В		b _{max}	D	D _N	d ₁ H8 8)	d _{min}	d d _{max}	G	g	Н	h	k	L	sw	s	u	v
	0	8,5	2	6	45	45	35	7	20 2)	M4	3	37	3	_ 7)	33	-	2,5	37	2 7)
	01	16	3	8	58	40	40	12	22	3)	4	46	5	_ 7)	45	32	3	46	2,5 7)
	1	17	3	10	68	45	44	12	25	4)	5	50	5	1,3 7)	52	41	3	50	3 7)
	2	19	4	12	88	58	58	15	35	5)	5	67	6	3	57	50	3	67	10
	3	21	5	15	115	75	72	19	45	6)	5	84	6	5,5	68	65	4	84	13
	4	23	6	18	140	90	85	25	55	M8	6	104	7	5,5	78	80	4	97	13
Size	5	29	8	20	170	102	98	30	65	M8	8	125	8	5,5	92	90	5	109	13
Size	6	31	8	23	200	120	116	40	80	M8	8	150	10	-	102	105	5	-	-
	7	33	8	25	240	150	144	48	100	M10	8	185	10	-	113	135	5	-	-
	8	35	8	25	285	180	170	60	120	M10	8	230	10	-	115	165	5	-	-
	9	53	12	28	350	225	237	57	140	M12	9	290	10	-	162	220	6	-	-
	10	60	15	35	415	255	270	80	160	M12	9	340	10	-	185	250	6	-	-
	11	73	20	45	490	285	305	90	180	M16	11	400	10	-	222	280	7	-	-
	12	79	25	55	555	315	335	100	200	M16	11	450	10	-	250	310	7	-	-

Order Number Adjusting nut Bore Keyway standard 0 Hub acc. with radial adjustment 10) 1 Ø d^{H7} DIN 6885-1 for triple layering (for high torque range: Sizes 3 to 5) 2 DIN 6885-3 0 0 Torque range 9) Friction lining Sizes Width of drive element b 0 1 standard Dependent on size: for oil running 11) if not specified, we deliver the bearing bushing medium 2 to for maximum installation width b_{max} . For narrower drive elements, the bearing 12 high 10) 3 special low-friction bushing is shortened, see page 20. material 11)


Example: Order Number 4 / 100.210 / 50 / 6885-1 / 15

- 1) See Explanations page 19
- 2) Size 0: up to Ø 19 keyway acc. DIN 6885-1 over Ø 19 keyway acc. DIN 6885-3
- 3) Size 01: up to Ø 12 M4, over Ø 12 M5
- 4) Size 1: up to Ø 12 M4, over Ø 12 up to Ø 17 M5, over Ø 17 M6
- 5) Size 2: up to Ø 17 M5, over Ø 17 M6

- 6) Size 3: up to Ø 22 M6, over Ø 22 M8
- 7) Hexagon socket countersunk screw to ISO 10642/DIN 7991
- 8) Tolerance value H8 refers to output element bore.
- 9) See Technical Data, limit torque for overload M_a
- 10) Only Sizes 0 to 5
- 11) For available torques, see Table 1, page 19

ROBA®-slip hub with standard chain sprocket

Type 100.___ Sizes 01 to 5

The smallest possible chain sprocket was chosen for each slip hub size on this ROBA®-slip hub.

The ROBA®-slip hub with standard chain sprocket is the most cost-effective drive element for all chain drives which place high emphasis on safety.

All available chain sprockets can be used with this design, observing the installation dimensions for the ROBA®-slip hub.

On order, please state the number of teeth 'z' and the data of the chain sprocket disk. For data of the standard chain sprocket disk, pleas see the Table.

We reserve the right to make dimensional and constructional alterations.

Technical Data						Siz	ze		
lecillical Data				01	1	2	3	4	5
Limit torques	Type 100.11_	M _G	[Nm]	6 – 30	14 – 70	26 – 130	50 - 250	110 – 550	140 – 700
for overload	Type 100.21_	M _G	[Nm]	30 - 60	70 – 130	130 – 250	250 - 550	550 - 1100	700 – 1400
Operating speed 1)		n _{max}	[rpm]	6600	5600	4300	3300	2700	2200
Weight (pilot bored)			[kg]	0,7	1,1	1,9	3,8	6,9	11,2

Dim.		ь.	_	_	_	d	H7	al		_						CW		
[mm]		B ₁	С	D	D _N	d _{min}	d _{max}	a _o	d _k	G	g	Н	h	k	L	SW	u	V
	01	5,0	18,5	58	40	12	22	69,95	74	2)	4	46	5	_ 6)	45	32	46	2,5 6)
	1	7,0	20,5	68	45	12	25	89,24	95	3)	5	50	5	1,3 6)	52	41	50	3 6)
Size	2	7,0	22,5	88	58	15	35	109,40	115	4)	5	67	6	3	57	50	67	10
Size	3	10,7	26,25	115	75	19	45	133,86	142,5	5)	5	84	6	5,5	68	65	84	13
	4	15,8	30,65	140	90	25	55	170,43	182	M8	6	104	7	5,5	78	80	97	13
	5	15,8	36,65	170	102	30	65	194,59	206	M8	8	125	8	5,5	92	90	109	13

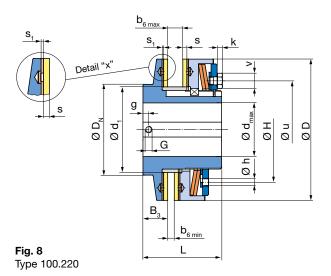
Dimensions					Si	ze		
Difficusions			01	1	2	3	4	5
Ctondond	www.haw.af.taath	standard	23	22	27	22	21	24
	number of teeth	min.	23	20	25	22	20	24
chain sprocket	for chains DIN 81	87	3/8" x 7/32"	¹ / ₂ " x ⁵ / ₁₆ "	¹ / ₂ " x ⁵ / ₁₆ "	3/4" x 7/16"	1" x 17 mm	1" x 17 mm

Order Number

Adjusting nut standard 0 Hub acc. with radial adjustment 1 Ø d HT DIN 6885-1 z

0 Sizes Torque range 7) **Friction lining** Chain 01 1 standard friction lining low for standard chain sprocket to medium 2 2 rustproof friction pairing 5 friction lining for oil running 8) special low-friction material 8)

Example: Order Number 3 / 100.211 / 40 / 6885-1 / 22 / 3/4" x 7/16"

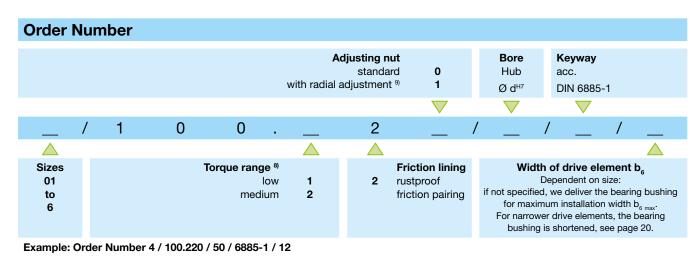

- 1) See Explanations page 19
- 2) Size 01: up to Ø 12 M4, over Ø 12 M5
- 3) Size 1: up to Ø 12 M4, over Ø 12 up to Ø 17 M5, over Ø 17 M6
- 4) Size 2: up to Ø 17 M5, over Ø 17 M6

- 5) Size 3: up to Ø 22 M6, over Ø 22 M8
- 6) Hexagon socket countersunk screw to ISO 10642/DIN 7991
- 7) See Technical Data, limit torque for overload M_G
- 8) For available torques, see Table 1, page 19

ROBA®-slip hub with rustproof friction lining

Type 100._2_ Sizes 01 to 6

Used in conjunction with cast iron and steel surfaces, the friction linings can form a rust compound which increases the friction value and therefore the torque considerably. However, a high increase in torque makes the machine unsafe.


For this reason, ROBA®-slip hubs can be equipped with disks made of stainless steel, which do not stick to the friction lining and do not form rust compounds.

ROBA®-slip hubs with rustproof friction linings offer higher security on drives operating in open air conditions, in particularly wet conditions or those which are subject to long downtimes.

We reserve the right to make dimensional and constructional alterations.

Technical Data							Size			
lecillical Data				01	1	2	3	4	5	6
Limit torques	Type 100.12_	M _G	[Nm]	6 - 30	14 – 70	26 - 130	50 - 250	110 - 550	140 – 700	240 - 1200
for overload	Type 100.22_	M _G	[Nm]	30 - 60	70 – 130	130 - 250	250 - 550	550 - 1100	700 – 1400	1200 – 2400
Operating speed 1)		n _{max}	[rpm]	6600	5600	4300	3300	2700	2200	1900
Weight (pilot bored)			[kg]	0,6	0,9	1,7	3,2	5,5	9,2	12,9

Dim. [mm]		B ₃	b _{6 min}	b _{6 max}	D	D _N	d ₁ H8 2)	d d _{min}	нт d _{max}	G	g	Н	h	k	L	s	S ₁	u	v
	01	17	1	6	58	40	40	12	22	3)	4	46	5	7)	45	3	1	46	2,5 7)
	1	18	1	8	68	45	44	12	25	4)	5	50	5	1,37)	52	3	1	50	3 7)
	2	20	2	10	88	58	58	15	35	5)	5	67	6	3	57	3	1	67	10
Size	3	22	3	13	115	75	72	19	45	6)	5	84	6	5,5	68	4	1	84	13
	4	24,5	3	15	140	90	85	25	55	M8	6	104	7	5,5	78	4	1,5	97	13
	5	30,5	5	17	170	102	98	30	65	M8	8	125	8	5,5	92	5	1,5	109	13
	6	32,5	5	20	200	120	116	40	80	M8	8	150	10	-	102	5	1,5	-	-

- 1) See Explanations page 19
- 2) Tolerance value H8 refers to output element bore.
- 3) Size 01: up to Ø 12 M4, over Ø 12 M5
- 4) Size 1: up to Ø 12 M4, over Ø 12 up to Ø 17 M5, over Ø 17 M6
- 5) Size 2: up to Ø 17 M5, over Ø 17 M6

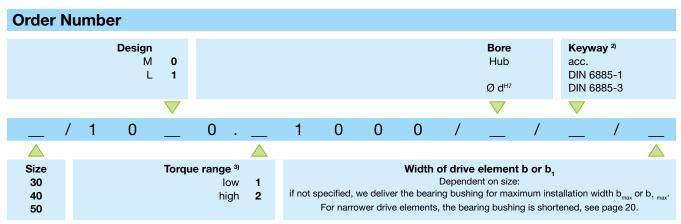
- 6) Size 3: up to Ø 22 M6, over Ø 22 M8
- 7) Hexagon socket countersunk screw to ISO 10642/DIN 7991
- 8) See Technical Data, limit torque for overload M_G
- 9) Only Sizes 01 to 5

ROBA®-Co-Pro®

Types 1000._1000 and 1010._1000 Sizes 30 to 50

 b_1 8 SS ğ ğ gd, ğ ď ğď ğ Ø ğ Fig. 9 Fig. 10 Type 1000.11000 Type 1010.11000

ROBA®-Co-Pro® is a compact, high-performance safety clutch.


On design M (Type 1000), the drive element is clamped spring-pretensioned between two friction linings.

The optimised performance capability of the clutch design L (Type 1010) is achieved via a second pair of friction linings. Knobs are provided in the transmission flange for torque transmission onto the drive element. These knobs grip via positive locking into the bores in the drive element (drive element not included in delivery).

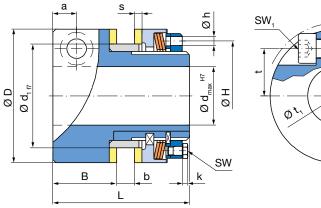
We reserve the right to make dimensional and constructional alterations.

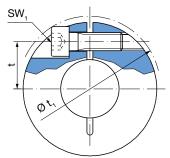
Technical Da	to					Size	
lecillicai Da	ıa				30	40	50
	Time M	Type 1000.11000	M _G	[Nm]	50 - 100	100 - 200	200 - 400
Limit torques	Type M	Type 1000.21000	M _G	[Nm]	100 - 200	200 - 400	400 - 800
for overload	Time I	Type 1010.11000	M _G	[Nm]	100 - 200	200 - 400	400 - 800
	Type L	Type 1010.21000	M _G	[Nm]	200 - 400	400 - 800	800 - 1600
Operating speed	j 1)		n _{max}	[rpm]	1500	1500	1500
Weight 1	Type M	Type 10001000		[kg]	0,6	1,5	2,8
	Type L	Type 10101000		[kg]	1,4	2,3	4,3

im. b		b	b) ₁	d													
	а	b _{min}	b _{max}	b _{1 min}	b _{1 max}	Pilot bore	d _{max}	d ₁	d ₂	d ₃	d ₄	d ₅	f,	I ₁	l ₂	k	S	S
30	9	8	16	7	11	15	30 H7 2)	44	54	63	65	68	M5	68	45	3	2	6
40	11	8	16	15	19	20	40	64	75	85	87	90	M5	80	60	3	3	6
50	13	12	20	19	25	25	50	80	94	108	110	113	M6	95	75	3	3	10
	40	30 9 40 11	a b _{min} 30 9 8 40 11 8	a b _{min} b _{max} 30 9 8 16 40 11 8 16	a b _{min} b _{max} b _{1 min} 30 9 8 16 7 40 11 8 16 15	a b _{min} b _{max} b _{1 min} b _{1 min} b _{1 min} 30 9 8 16 7 11 40 11 8 16 15 19	a b _{min} b _{max} b _{1 min} b _{1 min} pilot bore 30 9 8 16 7 11 15 40 11 8 16 15 19 20	a b min b max b m	a b b b b b b b b b b b d	a b _{min} b _{max} b _{1 min} b _{1 max} Pilot bore d _{max} d ₁ d ₂ 30 9 8 16 7 11 15 30 H7 2) 44 54 40 11 8 16 15 19 20 40 64 75	a b b b b b b max b max b pilot d d d d d d d d d d d 63 30 9 8 16 7 11 15 30 H7 2) 44 54 63 40 11 8 16 15 19 20 40 64 75 85	a b _{min} b _{max} b _{1 min} b _{1 min} pilot bore d _{max} d ₁ d ₂ d ₃ d ₄ 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 40 11 8 16 15 19 20 40 64 75 85 87	a b min b max b max b max b max pilot bore d max d max <t< th=""><th>a b b b b b pilot d<th>a b_{min} b_{max} b_{1 min} b_{1 min} pilot bore d_{max} d₁ d₂ d₃ d₄ d₅ f₁ I₁ 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80</th><th>a b_{min} b_{max} b_{1 min} b_{1 max} pilot bore d_{max} d₁ d₂ d₃ d₄ d₅ f₁ l₁ l₂ 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 45 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80 60</th><th>a b_{min} b_{max} b_{1 min} b_{1 min} pilot bore bore d_{max} d₁ d₂ d₃ d₄ d₅ f₁ I₁ I₂ k 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 45 3 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80 60 3</th><th>a b_{min} b_{max} b_{1 min} b_{1 min} b_{1 min} b_{0 max} b_{1 min} b_{1 min} b_{0 max} d₁ d₂ d₃ d₄ d₅ f₁ l₁ l₂ k s 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 45 3 2 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80 60 3 3</th></th></t<>	a b b b b b pilot d <th>a b_{min} b_{max} b_{1 min} b_{1 min} pilot bore d_{max} d₁ d₂ d₃ d₄ d₅ f₁ I₁ 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80</th> <th>a b_{min} b_{max} b_{1 min} b_{1 max} pilot bore d_{max} d₁ d₂ d₃ d₄ d₅ f₁ l₁ l₂ 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 45 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80 60</th> <th>a b_{min} b_{max} b_{1 min} b_{1 min} pilot bore bore d_{max} d₁ d₂ d₃ d₄ d₅ f₁ I₁ I₂ k 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 45 3 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80 60 3</th> <th>a b_{min} b_{max} b_{1 min} b_{1 min} b_{1 min} b_{0 max} b_{1 min} b_{1 min} b_{0 max} d₁ d₂ d₃ d₄ d₅ f₁ l₁ l₂ k s 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 45 3 2 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80 60 3 3</th>	a b _{min} b _{max} b _{1 min} b _{1 min} pilot bore d _{max} d ₁ d ₂ d ₃ d ₄ d ₅ f ₁ I ₁ 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80	a b _{min} b _{max} b _{1 min} b _{1 max} pilot bore d _{max} d ₁ d ₂ d ₃ d ₄ d ₅ f ₁ l ₁ l ₂ 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 45 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80 60	a b _{min} b _{max} b _{1 min} b _{1 min} pilot bore bore d _{max} d ₁ d ₂ d ₃ d ₄ d ₅ f ₁ I ₁ I ₂ k 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 45 3 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80 60 3	a b _{min} b _{max} b _{1 min} b _{1 min} b _{1 min} b _{0 max} b _{1 min} b _{1 min} b _{0 max} d ₁ d ₂ d ₃ d ₄ d ₅ f ₁ l ₁ l ₂ k s 30 9 8 16 7 11 15 30 H7 2) 44 54 63 65 68 M5 68 45 3 2 40 11 8 16 15 19 20 40 64 75 85 87 90 M5 80 60 3 3

Example: Order Number 30 / 1010.21000 / 10

¹⁾ See Explanations page 19


²⁾ Size 30: keyway acc. DIN 6885-3


³⁾ See Technical Data, limit torque for overload M_a

ROBA®-clamp

Type 106.___ Sizes 0 to 2

ROBA®-clamp devices are used to provide overload protection in machine drives with shaft ends without a keyway.

The frictionally-locking, backlash-free clamping hub is attached to the shaft by tightening one single screw. This means that axial attachment using a shaft collar, adjusting screws or a press cover are unnecessary.

The ROBA®-clamp is used in packing machines, transport machines and devices, construction machinery, textile machinery, agricultural machinery, conveyor systems, feed devices, loading systems, in chemical industry machines as well as in devices and systems for general mechanical engineering.

Fig. 11 Type 106.310

We reserve the right to make dimensional and constructional alterations.

Technical Data	_				Si	ze	
rechinical Data	d			0	01	1	2
	Type 106.11_	M _G	[Nm]	2 - 10	6 - 30	14 - 70	26 - 130
Limit torques for overload	Type 106.21_	M _G	[Nm]	10 - 20	30 - 60	70 - 130	130 - 250
ioi overioau	Type 106.31_	M _G	[Nm]	18 - 30	60 - 90	130 - 200	250 - 400
Onevetion enced	1)	n _{max}	[rpm]	8500	6600	5600	4300
Operating speed	max. differential		[rpm]	500	500	500	500
Weight (pilot bore	/eight (pilot bored)			0,5	0,85	1,25	2,3
Tightening torque	ghtening torque for clamping screw			16	41	83	145

Dim.		а	В	b _{min}	b _{max}	D	d ₁ ^{H8 2)}		d ^{H7} 3) 1in from 5)	d _{max}	Н	h	k	L	SW	SW ₁	s	t	t,
	0	8	21,5	2	6	45	35	7	12	22	37	3	-	46	2	5	2,5	16	50
C:	01	10	26	3	8	58	40	-	12	25	46	5	-	55	2,5	6	3	19	62
Size	1	12	30	3	10	68	44	12	20	28	50	5	1,3	65	3	8	3	22	74
	2	14	34	4	12	88	58	15	20	40	67	6	3	72	10 ⁶⁾	10	3	30	93

Order Number Adjusting nut Bore standard 0 Hub with radial adjustment $Ø d^{H7}$ 6 **Sizes** Torque range 7) **Friction lining** Width of drive element b Dependent on size: 0 low 1 1 standard if not specified, we deliver the bearing to medium 2 4 for oil running 8) bushing for maximum installation width b_{max} . 3 5 2 special high For narrower drive elements, the bearing low-friction bushing is shortened, see page 20. material 9)

- Example: Order Number 2 / 106.210 / 30 / 10
- 1) See Explanations page 19
- 2) Tolerance value H8 refers to output element bore.
- 3) Observe the shaft load!
- 4) Transmittable torque = 60 % of Type 106.31
- 5) Transmittable torque = 100 % of Type 106.31_

- 6) Hexagon head screws ISO 4017/DIN 933
- 7) See Technical Data, limit torque for overload $\rm M_{\rm G}$
- 8) Available torque: 30 % of Type 106._1_
- 9) Only permitted for lower torque range (Type 106.11_), available torque 50 %

ROBA®-min

Types 121.___ and 123.___ Sizes 1 to 5

b_{5 ma} s s ğ Ö Ø Δ c Ø □ ď л Ø ØD I g Ø σ ס Ø Ø Ø Ø Ø В Р ğ В В, $b_{\!_{\underline{3\;min}}}$ $b_{_{\underline{5}\,\underline{min}}}$

ROBA®-min Types 121 and 123 are slip hubs for drive elements, chain sprockets or toothed wheels with especially small diameters. ROBA®-min devices are used in particular for high transmission ratios or also for double or triple-row chain sprockets or wide toothed

When compared with the standard Type 100, the ROBA®-min Types 121 and 123 transmit lower torques.

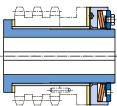
An advantage of Types 121 and 123 is that the drive element comes very close to the shaft bearing as a result of the short hub collar.

wheels.


Fig. 12 Type 121.210

Fig. 13 Type 123.210

We reserve the right to make dimensional and constructional alterations.

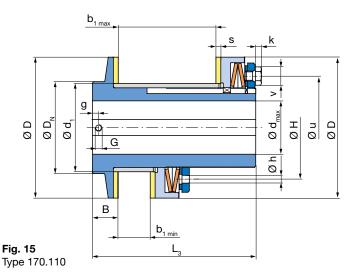

Technical Data						Size		
lecillical Data				1	2	3	4	5
Limit torque	Type 1211_	M _G	[Nm]	8 - 40	16 - 80	40 - 200	80 - 400	110 - 550
for overload	Type 1221_	M _G	[Nm]	40 - 80	80 - 160	200 - 400	400 - 800	550 - 1100
Operating speed 1)		n _{max}	[rpm]	2800	2200	1600	1400	1100
Weight (nilet hered)	Type 121		[kg]	0,8	1,6	3,2	5,7	9,1
Weight (pilot bored)	Type 123		[kg]	1,0	2,2	4,2	7,9	13,5

Dim.		B ₂	b)3	k) ₅	D	D.	d. H8 2)	d	H7	н	h	k			s	u	v
[mm]		D ₂	b _{3 min}	b _{3 max}	b _{5 min}	b _{5 max}		D ₁	u ₁	$d_{\scriptscriptstylemin}$	\mathbf{d}_{max}				-1	- 2	3	u	· ·
	1	8	10	15	15	43	68	59	44	12	25	50	5	1,3 ³⁾	48	76	3	50	3 ³⁾
	2	10	12	19,5	19,5	53,5	88	77	58	15	35	67	6	3	56	90	3	67	10
Size	3	13,5	15	27	27	62	115	89,5	72	19	45	84	6	5,5	73	108	4	84	13
	4	16	18	38	38	91,5	140	104	85	25	55	104	7	5,5	93	146,5	4	97	13
	5	18	20	44	44	126	170	119,5	98	30	65	125	8	5,5	107	188,5	5	109	13

1) See Explanations page 19

Fig. 14 Installation Example Type 123.210

²⁾ Tolerance value H8 refers to output element bore.


³⁾ Hexagon socket countersunk screw to ISO 10642/DIN 7991

⁴⁾ See Technical Data, limit torque for overload M_G

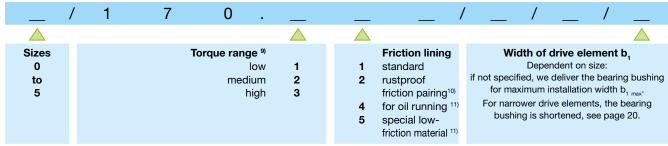
⁵⁾ For available torques, see Table 1, page 19

ROBA®-max

Type 170.___ Sizes 0 to 5

ROBA®-slip hubs are used to provide overload protection in machine drives with chain sprockets, V-belt pulleys or toothed wheels. Type 170 has a longer hub than the standard Type 100. As a result, Type 170 is particularly suitable for wide drive elements. The permitted limit torques and the diameter correspond to the standard model. ROBA®-max Type 170 can transmit a higher torque than a ROBA®-min Type 123 with the same installation width.

Type 170 can be used for all mechanical engineering applications.

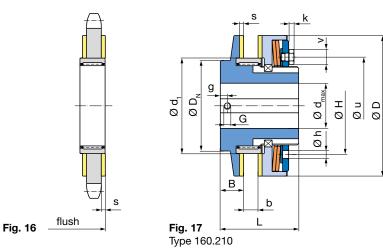

We reserve the right to make dimensional and constructional alterations.

Technical Data							Size			
lecillical Data				0	01	1	2	3	4	5
	Type 170.11_	M _G	[Nm]	2 – 10	6 – 30	14 – 70	26 – 130	50 - 250	110 - 550	140 - 700
Limit torque	Type 170.21_	M _G	[Nm]	10 – 20	30 – 60	70 – 130	130 – 250	250 - 550	550 - 1100	700 -1400
for overload	Type 170.31_	M _G	[Nm]	18 – 30	60 – 90	130 – 200	250 - 400	-	-	-
	Type 170.312	M _G	[Nm]	-	-	-	-	550 - 800	1100 – 1600	1400 – 2100
Operating speed 1)		n _{max}	[rpm]	8500	6600	5600	4300	3300	2700	2200
Weight (pilot bored)			[kg]	0,4	0,8	1,2	2,4	4,6	8,5	14,9

Dim. [mm]		В	b _{1 min}	1	D	D _N	d ₁ H8 2)		нт d _{max}	G	g	Н	h	k	L ₃	s	u	v
	0	8,5	9	25	45	45	35	10	20 3)	M4	3	37	3	_ 8)	50	2,5	37	28)
	01	16	12	33	58	40	40	12	22	4)	4	46	5	_ 8)	70	3	46	2,5 8)
	1	17	15	43	68	45	44	12	25	5)	5	50	5	1,38)	85	3	50	38)
Size	2	19	19,5	53,5	88	58	58	15	35	6)	5	67	6	3	99	3	67	10
	3	21	27	62	115	75	72	20	45	7)	5	84	6	5,5	115,5	4	84	13
	4	23	38	91,5	140	90	85	25	55	M8	6	104	7	5,5	153,5	4	97	13
	5	29	44	126	170	102	98	30	65	M8	8	125	8	5,5	199,5	5	109	13

Order Number

Adjusting nut Bore Keyway standard 0 Hub acc. with radial adjustment 1 Ø dH7 DIN 6885-1 for triple layering (for high torque range: Sizes 3 to 5) 2 DIN 6885-3



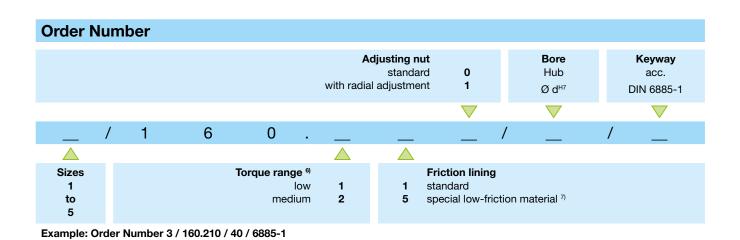
Example: Order Number 4 / 170.210 / 50 / 6885-1 / 80

- 1) See Explanations page 19
- 2) Tolerance value H8 refers to output element bore.
- 3) Size 0: up to Ø 19 keyway acc. DIN 6885-1 over Ø 19 keyway acc. DIN 6885-3
- 4) Size 01: up to Ø 12 M4, over Ø 12 M5
- 5) Size 1: up to Ø 12 M4, over Ø 12 bis Ø 17 M5, over Ø 17 M6
- 6) Size 2: up to Ø 17 M5, over Ø 17 M6
- 7) Size 3: up to Ø 22 M6, over Ø 22 M8
- 8) Hexagon socket countersunk screw to ISO 10642/DIN 7991
- 9) See Technical Data, limit torque for overload $\rm M_{_{\rm G}}$
- 10) Only Sizes 01 to 5 and torque range 1 and 2
- 11) For available torques, see Table 1, page 19

ROBA®-slip hub with needle bearing

Type 160.___ Sizes 1 to 5

ROBA®-slip hubs are used to provide overload protection in machine drives with chain sprockets, V-belt disks or toothed wheels. The difference between Type 160 and the standard Type 100 is that the former has a needle bearing instead of a bearing bushing. As a result, Type 160 is particularly suitable for applications with high radial loads, high slipping frequencies and increased shaft run-out accuracy (toothed wheels).


The drive element is pressed onto the needle bearing as shown in Fig. 16. Please ensure that the right-hand side of the needle bearing is flush with the right-hand side of the friction lining. The needle bearing with the drive element and the two friction linings are then pushed onto the hub.

Type 160 can be used throughout the mechanical engineering industry.

We reserve the right to make dimensional and constructional alterations.

Technical Data						Size		
lecillical Data				1	2	3	4	5
Limit torque	Type 160.11_	M _G	[Nm]	14 – 70	26 - 130	50 - 250	110 - 550	140 - 700
for overload	Type 160.21_	M _G	[Nm]	70 – 130	130 - 250	250 - 550	550 - 1100	700 – 1400
Operating speed 1)		n _{max}	[rpm]	4200	3200	2400	2000	1600
Weight (pilot bored)			[kg]	0,9	1,7	3,2	5,5	9,2

Dim. [mm]		В	b ±0,5	D	D _N	d ₁ N7 2)	G	g	Н	h	k	L	s	u	v
	1	17	7	68	45	47	3)	5	50	5	1,3 ⁵⁾	52	3	50	3 5)
	2	19	10,3	88	75	63	4)	5	67	6	3	57	3	67	10
Size	3	21	12,5	115	89,5	78	M6	5	84	6	5,5	68	4	84	13
	4	23	16	140	90	95	M8	6	104	7	5,5	78	4	97	13
	5	29	18	170	102	110	M8	8	125	8	5,5	92	5	109	13

1) See Explanations page 19

2) Tolerance value N7 refers to output element bore.

3) Size 1: up to Ø 12 M4, over Ø 12 up to Ø 17 M5, over Ø 17 M6

4) Size 2: up to Ø 17 M5, over Ø 17 M6

- 5) Hexagon socket countersunk screw to ISO 10642/DIN 7991
- 6) See Technical Data, limit torque for overload $\rm M_{\rm G}$
- 7) For available torques, see Table 1, page 19

ROBA®-lastic - torsionally flexible

Type 135.___ Sizes 0 to 5

Fig. 18
Type 135.110

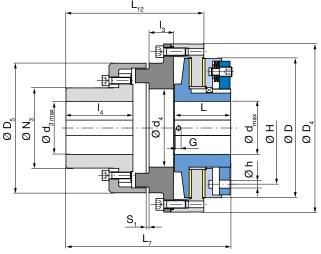
ROBA®- lastic Type 135 is a flexible safety clutch with adjustable torque for connecting two shafts. The flexible coupling part is designed as a simple plug-in coupling.

The torque is transmitted via flexible rubber buffers made of wear and oil-resistant plastic material insensitive to temperature changes.

We reserve the right to make dimensional and constructional alterations

						vve reserve	e trie right to ma	ake dimensional	rand construction	mai aneranons.
Toohnigal Da	sto.						Size			
lecillical Da	ııa			0	01	1	2	3	4	5
Limit torque	Type 135.11_	\mathbf{M}_{G}	[Nm]	2 - 10	6 - 30	14 - 70	26 - 130	50 - 250	110 - 550	140 – 700
for overload	overload Type 135.21 M _g			10 - 20	30 - 60	70 - 130	130 - 250	250 - 550	550 - 1100	700 – 1400
Operating spee	d ¹⁾	n _{max}	[rpm]	7000	6500	5600	4300	3300	2700	2200
Weight (pilot bo			[kg]	1,3	3,0	3,2	6,5	10,1	19,5	23,4
Dormittod	axial	х	[mm]	± 1,0	± 1,0	± 1,0	± 1,0	± 1,0	± 1,0	± 1,0
	radial	У	[mm]	0,5	0,5	0,5	0,5	0,5	0,5	0,5
iiiisaiigiiiiieiits	angular	α	[°]	0,5	0,5	0,5	0,5	0,5	1,0	1,0

Dim. [mm]		D	D ₆	D ₇	d d _{min}		$\mathbf{d_{4}}_{4\mathrm{min}}$	H7 d _{4 max}	E ₃	G	Н	h	k	L	L ₇	L ₁₂	l ₃	I ₄	N ₄	S ₂	u	v
	0	45	80	80	7	202)	11	30	23	M4	37	3	_7)	33	66	48	14	30	50 _{h11}	4	37	27)
	01	58	105	105	12	22	11	42	32	3)	46	5	_7)	45	91	68	22	42	65 _{h11}	4	46	2,5 7)
	1	68	105	105	12	25	11	42	32	4)	50	5	1,3 ⁷⁾	52	98	69	23	42	65 _{h11}	4	50	3 7)
Size	2	88	135	135	15	35	13	60	36	5)	67	6	3	57	116	86	27	55	85 _{h11}	4	67	10
	3	115	160	160	19	45	25	60	38	6)	84	6	5,3	68	129	92	31	55	90	6	84	13
	4	140	198	198	25	55	30	75	47	M8	104	7	5,3	78	166	121	33	82	115	6	97	13
	5	170	198	208	30	65	50	75	47	M8	125	8	5,3	92	180	127	39	82	115	6	109	13


Order Number Adjusting nut Bore Bore standard 0 Hub Hub with radial adjustment $Ø d^{H7}$ $Ød_4^{H7}$ 3 5 **Sizes** Torque range 8) **Friction lining** Keyway Keyway 0 1 1 standard low acc. acc. to medium 2 rustproof friction pairing9) DIN 6885-1 DIN 6885-1 5 DIN 6885-3

Example: Order Number 5 / 135.210 / 60 / 6885-1 / 60 / 6885-1

- 1) See Explanations page 19
- 2) Size 0: up to Ø 19 keyway acc. DIN 6885-1 over Ø 19 keyway acc. DIN 6885-3
- 3) Size 01: up to Ø 12 M4, over Ø 12 M5
- 4) Size 1: up to Ø 12 M4, over Ø 12 up to Ø 17 M5, over Ø 17 M6
- 5) Size 2: up to Ø 17 M5, over Ø 17 M6
- 6) Size 3: up to Ø 22 M6, over Ø 22 M8
- 7) Hexagon socket countersunk screw to ISO 10642/DIN 7991
- 8) See Technical Data, limit torque for overload M_G
- 9) Only Sizes 01 to 5

ROBA®-lastic - positive-locking

Type 132._ _0 Sizes 6 to 12

ROBA®-lastic Type 132 is a positive-locking, flexible safety clutch with adjustable torque for connecting two shafts. The flexible coupling component is designed as a positive-locking claw coupling.

The input and output can be disconnected without dismantling the clutch.

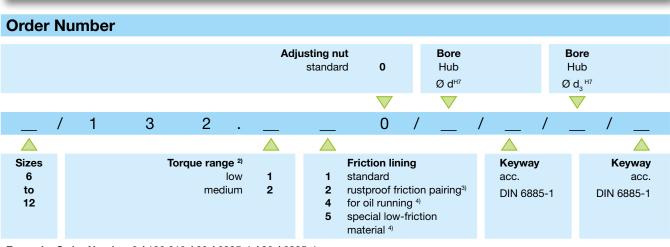

The torque is transmitted via a replaceable, flexible intermediate ring made of highly-damping, oil-resistant material insensitive to temperature changes.

Fig. 19 Type 132.110

We reserve the right to make dimensional and constructional alterations.

							20. 10 tilo ligili to	mano ammonolo		
Technical Da	nto.						Size			
recrimical Da	ala			6	7	8	9	10	11	12
Limit torque	Type 132.11_	M _G	[Nm]	240 – 1200	400 – 2000	680 – 3400	1200-6000	2000-10000	3400-17000	5000-25000
for overload	Type 132.21_	M _G	[Nm]	1200 – 2400	2000 – 4000	3400 – 6800	6000-12000	10000-20000	17000-34000	25000-50000
Operating spee	ed 1)	n _{max}	[rpm]	1900	1600	1300	1100	920	780	690
Weight (pilot bo			[kg]	48	70	98	200	330	506	738
Dormitted	axial	х	[mm]	± 2,0	± 2,0	± 2,5	± 2,5	± 2,5	± 2,5	± 2,5
Permitted	radial	У	[mm]	0,3	0,3	0,3	0,3	0,3	0,3	0,3
misangnments	angular	α	[°]	0,08	0,07	0,06	0,05	0,04	0,03	0,03

Dim. [mm]		D	D ₄	D ₅	_	н ₇	$d_{3 \text{ min}}$	d _{3 max}	d ₄	G	н	h	L	L ₇	L ₁₂	l ₃	l ₄	N ₃	S ₁
	6	200	274	214	40	80	50	95	130	M8	150	10	102	267	216	42	107	135,5	3,5
	7	240	314	240	48	100	50	100	145	M10	185	10	113	307	247	45	117	146	3,5
	8	285	344	265	60	120	60	115	160	M10	230	10	115	337	282	50	137	164	4
Size	9	350	430	330	57	140	70	135	200	M12	290	10	162	416	332	56	156	208	8
	10	415	500	415	80	160	85	180	270	M12	340	10	185	478	383	65	196	275	8
	11	490	615	480	90	180	85	190	320	M16	400	10	222	537	423	65	220	289	8
	12	555	692	575	100	200	110	240	400	M16	450	10	250	585	454	65	240	368	8

Example: Order Number 6 / 132.210 / 60 / 6885-1 / 80 / 6885-1

¹⁾ See Explanations page 19

²⁾ See Technical Data, limit torque for overload M_G

³⁾ Rustproof friction pairing only for Size 6

⁴⁾ For available torques, see Table 1, page 19

ROBA®-lastic - highly flexible

ntn

Ε

I,

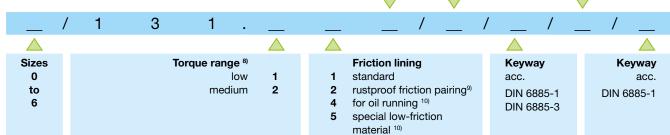
Type 131.___ Sizes 0 to 6

Ρ

F

ROBA®-lastic Type 131 is a highly flexible safety clutch with adjustable torque for connecting two shafts. The polygon-shaped rubber element on the flexible coupling has a considerable misalignment compensation capability and damps torsional vibrations and impacts.

Fig. 20 Type 131.110


We reserve the right to make dimensional and constructional alterations.

						VVC TCSCTV	c the right to me	arc dimensional	and construction	onar ancrations.
Technical Da	ata					Si	ze			
lecililical Da	ala			0	1	2	3	4	5	6
Limit torque	Type 131.11_	M _G	[Nm]	2 - 10	14 - 70	26 - 130	50 - 250	110 - 550	140 - 700	240 – 1200
for overload	Type 131.21_	M _G	[Nm]	10 - 20	70 - 130	130 - 250	250 - 550	550 - 1100	700 – 1400	1200 – 2400
Operating spee	ed 1)	n _{max}	[rpm]	8500	5600	4300	3300	2700	2200	1900
Weight (pilot bo	ored)		[kg]	1,0	3,0	5,1	12,6	25,5	29,5	55,4
Permitted	axial	х	[mm]	± 1,5	± 2	± 2,5	± 2,5	± 2,5	± 2,5	± 2,5
misalignments	radial	У	[mm]	1,5	2	2	2	2	2	2
inisangiments	angular	α	[°]	3	3	3	3	2	2	2

Dim. [mm]		Α	D	D ₂	d d _{min}	нт d _{max}	u ₁	н7 d_{1 max}	E	F	G	Н	h	k	L	L ₄	l,	N ₁	Р	u	v
	0	24	45	85	7	20 2)	10	26	20	4	M4	37	3	_ 6)	33	65	28	40	14,3	37	26)
	1	32	68	120	12	25	12	38	28	4	3)	50	5	1,3 ⁶⁾	52	98	42	60	24	50	3 6)
	2	42	88	150	15	35	15	48	36	6	4)	67	6	3	57	113	50	70	26	67	10
Size	3	58	115	200	19	45	20	65	50	8	5)	84	6	5,5	68	142	66	100	31,5	84	13
	4	70	140	260	25	55	30	85	62	8	M8	104	7	5,5	78	166	80	125	38,3	97	13
	5	70	170	260	30	65	30	85	62	8	M8	125	8	5,5	92	180	80	125	44,3	109	13
	6	85	200	340	40	80	40	115	77	8	M8	150	10	-	102	210	100	160	49	-	-

Order Number

Adjusting nut Bore Hub Hub with radial adjustment 7 1 Ø dH7

Example: Order Number 3 / 131.210 / 45 / 6885-1 / 60 / 6885-1

- 1) See Explanations page 19
- 2) Size 0: up to Ø 19 keyway acc. DIN 6885-1, over Ø 19 keyway acc. DIN 6885-3
- 3) Size 1: up to Ø 12 M4, over Ø 12 up to Ø 17 M5, over Ø 17 M6
- 4) Size 2: up to Ø 17 M5, over Ø 17 M6
- 5) Size 3: up to Ø 22 M6, over Ø 22 M8

- 6) Hexagon socket countersunk screw to ISO 10642/DIN 7991
- 7) Only Sizes 0 to 5
- 8) See Technical Data, limit torque for overload M
- 9) Only Sizes 1 to 6
- 10) For available torques, see Table 1, page 19

ROBA®-LD - torsionally rigid

С Χ with long sleeve Type 134.1_ 134.2_ _ ۵ D ğ Δ Ø Ø G with Ø short sleeve Type 133.1 133.2 Fig. 21 Type $13\frac{3}{4}.110$

Type 133._ _ and 134._ _ Sizes 1 to 8

The ROBA®-LD is a combination of the ROBA®-slip hub and the ROBA®-D coupling for connection of two shafts with angular and radial misalignment.

As a supplement to the ROBA®- lastic (slip hub with flexible coupling), the ROBA®-LD offers all the advantages of a torsionally rigid flexible all-steel coupling.

The ROBA®-LD Type 133 differs from Type 134 only in the construction length. On ROBA®-LD Type 133, a short sleeve is used (Dimension $\rm I_6$), and on Type 134, a long sleeve is used (Dimension $\rm I_5$).

We reserve the right to make dimensional and constructional alterations.

1,40

Technical Dat				Size	9						
lecinical Da	.d			1	2	2 3		5	6	7	8
Limit torque	Type 133.11_ Type 134.11_	M _G	[Nm]	14 – 70	26 –130	50-250	110-550	140-700	240 –1200	400 –2000	680 –3400
for overload	Type 133.21_ Type 134.21_	M _G	[Nm]	70 –130	130-250	250-550	550-1100	700–1400	1200-2400	2000-4000	3400-6800
Operating speed	1)	n _{max}	[rpm]	5600	4300	3300	2700	2200	1900	1600	1300
Weight	Type 133	······	[kg]	4,5	8,9	12,7	24,3	36,7	49	76	119
(pilot bored)	Type 134		[kg]	4,6	9,2	13,1	24,9	37,6	50	78	122
Permitted axial		$\Delta \mathbf{K}_{a}$	[mm]	1,0	1,2	1,4	1,6	1,8	1,8	2,0	2,2
misalign- radial	with long sleeve I ₅	$\Delta \mathbf{K}_{r}$	[mm]	1,25	1,50	1,85	2,20	2,20	2,45	2,55	3,00
misangn- radiai											

1,00

1,25

1,25

0,85

Dim. [mm]		С	D	D ₆		н7 d _{max}	d _s d _{s min}	нт d _{5 max}	G	н	h	k	L	L ₈	L ₉	L ₁₀	L ₁₁	ı	I ₅	I ₆	R	s	u	v	x	X ₁
	1	28	68	102	12	25	25	45 ²⁾	3)	50	5	1,3 ⁶⁾	52	150	146	119	115	45	64	33	135	$8 \pm 0,2$	50	3 6)	4	29
	2	28	88	128	15	35	25	55	4)	67	6	3	57	176,5	171	140,5	135	55	74	38	168	11 ± 0.3	67	10	5,5	37,5
	3	37	115	145	19	45	30	65	5)	84	6	5,5	68	204,5	199	158,5	153	65	94	48	185	11 ± 0.3	84	13	5,5	37,5
Size	4	40	140	180	25	55	35	80	M8	104	7	5,5	78	245	237	191	183	80	110	56	230	15 ± 0.4	97	13	8	53
Size	5	48	170	200	30	65	40	85	M8	125	8	5,5	92	264	254	210	200	80	110	56	270	$15 \pm 0,4$	109	13	10	60
	6	51	200	215	40	80	45	90	M8	150	10	-	102	298	288	239	229	90	120	61	290	20 ± 0.4	-	-	10	65
	7	60	240	250	48	100	50	100	M10	185	10	-	113	332	319	271	258	100	124	63	335	$23 \pm 0,5$	-	-	13	83
	8	55	285	300	60	120	60	115	M10	230	10	-	115	373	358	301	286	115	146	74	400	$27 \pm 0,6$	-	-	15	95

Order Number

ments

Sleeve short 3 long 4

with short sleeve I

angular per disk pack

Adjusting nut standard with radial adjustment 7

1

2

4

5

0,70

 ΔK_{\perp} [mm]

[°]

 $\Delta K_{.}$

Bore Hub Ø d^{H7}

0

Bore Hub Ø d₅ ^{H7}

1,50

1,75

/ 1 3

Sizes 1 to 8 Torque range ⁸⁾
low 1
medium 2

Friction lining standard rustproof friction pairing⁹⁾ for oil running ¹⁰⁾ special low-friction material ¹⁰⁾ Keyway acc. DIN 6885-1

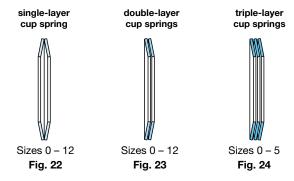
Keyway acc. DIN 6885-1 DIN 6885-3

Example: Order Number 2 / 133.211 / 35 / 6885-1 / 50 / 6885-1

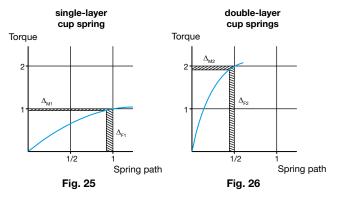
- 1) See Explanations page 19
- 2) Size 1: up to Ø 42 keyway acc. DIN 6885-1, over Ø 42 keyway acc. DIN 6885-3
- 3) Size 1: up to Ø 12 M4, over Ø 12 up to Ø 17 M5, over Ø 17 M6 4) Size 2: up to Ø 17 M5, over Ø 17 M6
- 5) Size 3: up to Ø 22 M6, over Ø 22 M8

- 6) Hexagon socket countersunk screw to ISO 10642/DIN 7991
- 7) Only Size 1 to 5
- 8) See Technical Data, limit torque for overload M_G
- 9) Rustproof friction pairing only for Sizes 1 to 6
- 10) For available torques, see Table 1, page 19

Technical Explanations


Torques - Cup Spring Layering

The cup spring layering in Figs. 22 – 24 show our ROBA®-slip hub standard design. Each layering results in a different spring characteristic curve or spring force (torque). A rule of thumb when using ROBA®-slip hubs is:


ROBA®-slip hub for high friction work and low torque; single-layer cup spring.

ROBA®-slip hub for medium friction work and larger torques; double-layer cup springs.

ROBA®-slip hub for low friction work and very high torques; triple-layer cup springs.

The torque behaviour of the ROBA®-slip hub on friction lining wear is clearly shown in Figs. 25 and 26. With single cup spring layering, the torque reduction on wear is very low (Fig. 25). With double cup spring layering, the change in torque is larger (Fig. 26), and with triple cup spring layering, the torque reduction is highest. However, the cup springs are designed with a relatively flat characteristic curve so that large wear paths can occur without larger drops in torque.

For special applications, weaker cup springs are available for the individual slip hub sizes, with which the minimum torques can be under-run.

Other cup spring layerings can be produced (e.g. combinations of double and single-layering) individually for special applications. In Figs. 25 and 26 it is shown that a torque adjustment in the uppermost quarter of the spring characteristic curve (torque) produces a particularly even torque, as the spring characteristic curve has its smallest increase in this area.

The torques stated in the Table "Technical Data" refer to drive elements made of steel or cast iron!

During the start-up phase (matching the friction surfaces), after long downtimes and during or after long slipping occurrences, the friction lining wear pattern and the friction coefficiencies may change. This can lead to changes in torque.

Friction Linings

As shown in Table 1 below, four different friction linings are available. The torque and the speed values in the slip hub catalogue are applicable for the standard friction lining during dry running. For other friction linings, please find the correct values in Table 1 or ask the manufacturers for special application values.

Friction lining number	Application	Available torque from M _{max.}
1	standard for dry running	100 %
2	rustproof friction pairing	100 %
4	bronze friction lining for oil running	30 %
5	special low-friction material (only for single-layer cup spring layering and with reduced friction)	50 %

Table 1

Speeds

The ROBA®-slip hub is thermically loaded depending on the slipping speed, slip time and the set torque.

To make sure that the ROBA®-slip hub friction linings are not overheated or destroyed, the specified friction parameters must not be exceeded.

The recommended values in the Reference Values Diagram (Diagram 1) show the maximum slipping speed limits of the standard friction linings in dry running.

These speed limits refer to a maximum slip time of 1 second. For longer slip times, the slipping speed must be reduced.

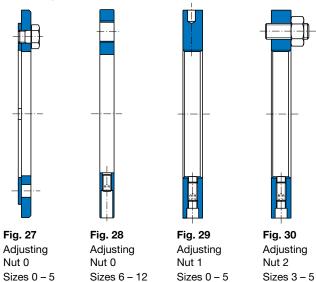
If in doubt, please carry out the friction work calculations for the respective application.

If the permitted slipping duration is exceeded, the $\mathsf{ROBA}^{\otimes}\text{-slip}$ hub will be overloaded.

=> Destruction of the friction linings

A speed monitor prevents the drive elements slipping for an excessively long time. Please ask the manufacturers for devices adapted to your application.

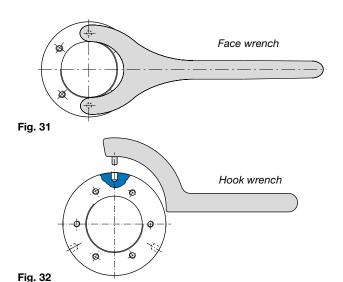



Diagram 1

19

Technical Explanations

Adjusting Nuts


The **standard adjusting nut for Sizes 0 – 5** (adjusting nut 0, Fig. 27) is adjusted using a face wrench (Fig. 31). The adjusting nut is secured using a lock washer with four projections as well as a hexagon head screw which is screwed through the adjusting nut into the lock washer bores.

The **standard adjusting nut for Sizes 6 – 12** (adjusting nut 0, Fig. 28) has no lock washer. It is secured against twisting with a radial set screw

Additionally, we provide an **adjusting nut for radial adjustment** for Sizes 0 – 5. Adjustment takes place here using a hook wrench (Fig. 32). On this design (adjusting nut 1, Fig. 29), the thrust washer must be shortened. The device is additionally secured against twisting using a radial screw-in set screw, which is pressed into one of the four hub keyways.

For triple-layering on the ROBA®-slip hub Sizes 0-2, the adjusting nut 0 or 1 is used. On Sizes 3-5, the adjusting nut 2 is used (Fig. 30). The adjusting nut 2 for the ROBA®-slip hub varies from the adjusting nut 0 or 1 for the ROBA®-slip hub as it has six axial set screws for torque adjustment. As with adjusting nut 1, it is secured using a radial set screw.

For high torque adjustments, it may be necessary to lengthen the lever on the face wrench or hook wrench (e.g. extension using a pipe).

Bearing Bushing

If the drive element installation width is not specified on order, we deliver the bearing bushing (Fig. 33) for the maximum installation width (b_{max}). If a smaller installation width is required, the bearing bushing must be shortened accordingly on the end without the inner chamfer, see the Example below. The bearing bushing is to be installed with the inner chamfer facing forwards, see Fig. 33.

Example for shortening the bearing bushing: *

ROBA®-slip hub, Size 3, Type 100.210 (see page 7)

Drive element = chain sprocket disk 3/4" x 1/2", z = 23,

chain sprocket width $B_1 = 12,7 \text{ mm}$

Bearing bushing width I [mm] according to the formula below:

 $I = b + 1.5 \cdot s + 0.5$

 $I = 12,7 + 1,5 \cdot 4 + 0,5$

 $I = 19,2_{-0.2}$ mm

* The total length of the clutch is not affected.

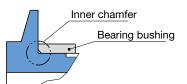
Bearing bushing width:

$I = b + 1.5 \cdot s + 0.5$	[mm]	for standard friction pairing Type 10010
$I_1 = b + 1.5 \cdot s + 2 \cdot s_1 + 0.5$	[mm]	for rustproof friction pairing Type 10020
		(T 10 0 1000

 $l = b + 2 \cdot s + f$ [mm] for Type 10_0._1000

I [mm] = bearing bushing width (Tolerance – 0,2 mm)

I, [mm] = bearing bushing width for slip hubs with rustproof friction linings (see page 9)


b [mm] = maximum installation width for drive elements

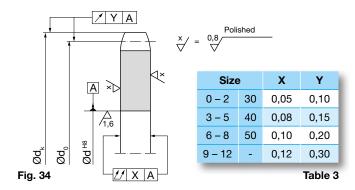
(nominal dimension + tolerance)

s [mm] = Friction lining strength (see page 7 for Type 100._ _0,

see page 10 for Type 10_0._1000)

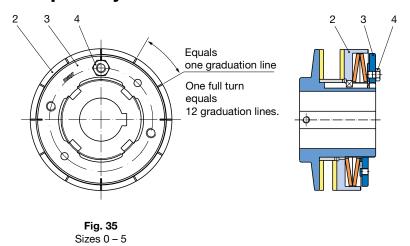
s₁ [mm] = Strength of rustproof disk (see page 9) f [mm] = Dimension for Type 10_0._1000 (see Table 2)

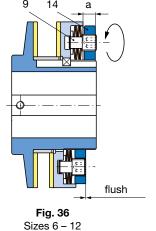
	•	f
Size	Type	Type
	1000	1010
30	-0,5	+5,5
40	-1,5	+4,5
50	-1,5	+4,5


Fig. 33 Table 2

For high radial load and high slipping frequency, we recommend the ROBA®-slip hub with needle bearing Type 160 (page 14).

Maintenance - Installation


Due to its smooth construction, the ROBA®-slip hub is easy to clean. As the friction linings wear down, the ROBA®-slip hub must be readjusted or, if they are very worn, the friction linings must be replaced. Apart from this, the ROBA®-slip hub needs no maintenance.


During installation, please ensure that no grease or oil comes into contact with the friction surfaces. In the area of the friction surfaces, the drive element surface must be finely polished and have exactly plane parallel surfaces (see Fig. 34 and Table 3).

Torque Adjustment

On the ROBA®-slip hub devices Sizes 1-5, the rear side of the thrust washer (Item 2) is engraved with 12 markings (24 markings on Size 0), and the adjusting nut (Item 3) is engraved with four markings (see Fig. 35).

The adjusting nut with locking washer is adjusted by hand up to the contact on the cup springs. The four notches on the adjusting nut and the notches on the thrust washer must align. Then the adjusting nut should be turned by the number of graduation lines which equal the required torque.

An Adjustment Table (Fig. 37) is adhered to the clutch, from which the number of graduation lines necessary for the required torque can be read off. If a required torque value lies between two graduation lines, please adjust to the smaller value (positive spring force tolerance). After the torque adjustment has been made, please secure the adjusting nut by turning the locking screw (Item 4).

On ROBA®-slip hub devices Sizes 6-12, the dimension "a" (see Fig. 36) can be found in the adhered Table (Fig. 38) and can be adjusted accordingly (see Fig. 36) using the adjusting nut (Item 14).

Finally, the cup spring supporting bolts (Item 9) should be turned stepwise evenly approx. 1/4 turn until they are flush with the adjusting nut (Item 14).

movr®	ROBA®-slip hub	act, rads	Single CS	Torque	Nm	50	62	80	100	130	150	200	235	250
mayr [®]	Size 3	the g	_ / └-// ١	Graduation lines	GL	9	10	12	14	16	18	20	22	24
	Surface-ground chain sprocket for friction lining No. 1.	the CS count grads.	Double CS	Torque	Nm	250	295	340	375	420	450	480	520	550
D-87665 Mauerstetten Made in Germany	run-in condition	Tu to the then of the form of	- -	Graduation lines	GL	10	11	12	13	14	15	16	17	18

Fig. 37

mov/r®	ROBA®-slip hub	a ∏ → ⊢-	Single	M [Nm]	240	300	420	540	660	780	900	1020	1140	1200
mayr	Size 6		Cup Spring	a =	14,9	14,8	14,4	14,0	13,6	13,2	12,7	12,2	11,7	11,4
power transmission	Surface-ground chain sprocket		Double	M [Nm]		600	840	1080	1320	1560	1800	2040	2280	2400
D-87665 Mauerstetten Made in Germany	for friction lining No. 1, run-in condition	Spring bolt flush	Cup Spring	a =		12,6	12,4	12,2	12,0	11,8	11,6	11,4	11,1	10,9

Fig. 38

The ROBA®-slip hub with triple cup spring layering has no Adjustment Table adhered to it.

Torque adjustment is carried out in the following way:

Please tighten the adjusting nut without using a lot of force. Then adjust the individual screws in the adjusting nut evenly in approx. 1/4 turns to the specified dimensions "b" or "a" shown in the Adjustment Diagram (if necessary, please order the Table from the manufacturers). In this way the required torque is obtained.

For initial adjustment, the ROBA®-slip hub should slip several times at 50 % of the torque specified in the Catalogue, in order to achieve a clean wear pattern on the friction lining.

Depending on the slipping frequency, occasional re-adjustment is necessary due to friction lining wear.

The ROBA®-slip hub can of course be delivered complete with a drive element at extra cost, pre-adjusted to the set torque.

For clutch Types with no adhered Adjustment Table, feel free to ask the manufacturers for Adjustment Diagrams.

Installation Examples

ROBA®-slip hub standard

Type 100.110

Features

Simple, robust and reasonably priced torque limitation for protection against overload damages.

Application

Protection of drives with narrow drive elements, e.g. single chain sprocket.

Technical Details

Axial attachment onto the shaft is carried out via a press cover and a screw, screwed into the central thread of the shaft. Slip monitoring is carried out by a speed monitor (available on request) with an external initiator.

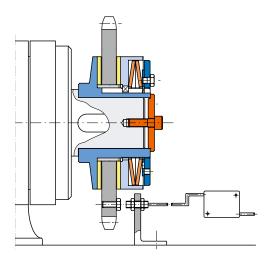


Fig. 39

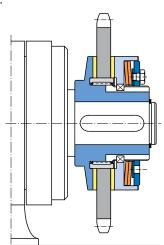
ROBA®-slip hub with needle bearing

Type 160.210

Features

Needle bearing in place of the standard bearing bushing; suitable for continuous slipping at low speeds and torques.

Application


Drives with high radial loads, high slipping frequency and increased shaft run-out accuracy.

Technical Details

Axial attachment onto the shaft is carried out via a set screw and a press cover, or, as indicated in the drawing, via a locking ring.

The width of the drive element is not variable due to the fixed needle bearing length.

Fig. 41

Type 100.220

Features

Slip hub with disks made of stainless steel to prevent the friction linings rusting.

ROBA®-slip hub with rustproof friction lining

Application

Overload protection for machines operating in open air conditions, in particularly wet conditions or machines subject to long down-times

Technical Details

The slip hub is held on the shaft via a set screw which applies pressure onto the keyway. The rustproof disks do not adhere to the friction lining and do not form rust compounds. A speed monitor (available on request) prevents excessively long slippage on overload.

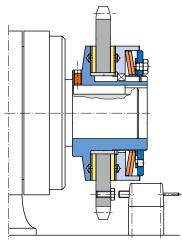


Fig. 40

ROBA®-min

Type 121.210

Features

Slip hub with a standard friction lining and a small bronze friction lining on the hub collar side.

Application

For drive elements with very small outer diameters and large installation widths.

Technical Details

The hub collar and a friction lining are significantly reduced.

On the side with the standard friction lining, an intermediate flange is additionally attached between lining and drive element and pinned to the drive element.

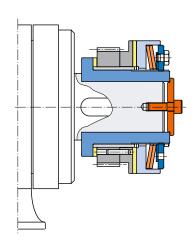


Fig. 42

22

2

Installation Examples

ROBA®-max

Type 170.110

Features

Slip hub with a long hub, the transmittable torques correspond to the standard ROBA®-slip hub.

Application

For very wide drive elements, e.g. multiple-row-chain sprockets.

Technical Details

The ROBA®-max can take drive elements with a large width range. The bearing bushing is modified to the required installation width. Attachment onto the shaft is carried out via a set screw which applies pressure onto the keyway.

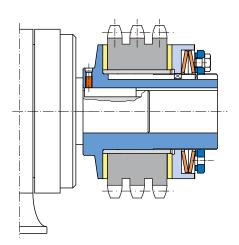


Fig. 43

ROBA®-lastic

Type 131.110

Features

Slip hub for connection of two shafts with polygon-shaped, highly flexible rubber elements.

Application

Overload protection, connection of two shafts in drives with large shaft misalignments, impacts and torsional vibrations.

Technical Details

The slip hub is attached onto the shaft using a press cover. The flexible coupling hub sits without attachment frictionally-locked on the shaft. Torque transmission takes place via a rubber element which has a high misalignment compensation capability and damps torsional vibrations and impacts.

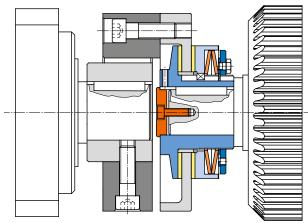


Fig. 44

ROBA®-LD - torsionally rigid

Type 134.110

Features

Slip hub combined with a torsionally rigid flexible all-steel coupling (ROBA®-D coupling).

Application

Overload protection, connection of two shafts and shaft misalignment compensation with low torsional backlash torque transmission.

Technical Details

The slip hub is attached using a press cover. The ROBA®-D hub is attached using a set screw onto the shaft. The ROBA®-D coupling transmits the torque backlash-free. Low torsional backlash results from the thrust washer jaw backlash in the slip hub outer keyways.

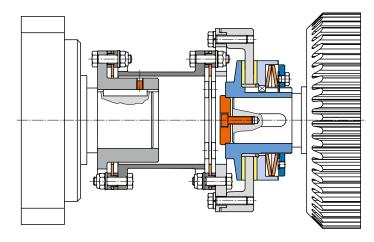


Fig. 45

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 44 21 www.mayr.com, E-Mail: info@mayr.com

Service Germany

Baden-Württemberg

Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/45 96 01 0

Fax: 07 11/45 96 01 10

Hagen

Im Langenstück 6 58093 Hagen Tel.: 0 23 31/78 03 0

Fax: 0 23 31/78 03 0

Bavaria

Eichenstraße 1 87665 Mauerstetten Tel.: 0 83 41/80 41 04 Fax: 0 83 41/80 44 23

Kamen

Lünener Straße 211 59174 Kamen Tel.: 0 23 07/23 63 85 Fax: 0 23 07/24 26 74 Chemnitz

Bornaer Straße 205 09114 Chemnitz Tel.: 03 71/4 74 18 96 Fax: 03 71/4 74 18 95

North

Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78 Franken

Unterer Markt 9 91217 Hersbruck Tel.: 0 91 51/81 48 64 Fax: 0 91 51/81 62 45

Rhine-Main

Hans-Böckler-Straße 6 64823 Groß-Umstadt Tel.: 0 60 78/7 82 53 37 Fax: 0 60 78/9 30 08 00

Branch office

China

Mayr Zhangjiagang Power Transmission Co., Ltd. Fuxin Road No.7, Yangshe Town 215637 Zhangjiagang Tel.: 05 12/58 91-75 67 Fax: 05 12/58 91-75 66

Singapore

info@mayr-ptc.cn

Mayr Transmission (S) PTE Ltd.
No. 8 Boon Lay Way Unit 03-06,
TradeHub 21
Singapore 609964
Tel.: 00 65/65 60 12 30
Fax: 00 65/65 60 10 00
info@mayr.com.sq

Great Britain

Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00 Fax: 0 15 35/66 32 61

Switzerland

sales@mayr.co.uk

Mayr Kupplungen AG Tobeläckerstraße 11 8212 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70 Fax: 0 52/6 74 08 75 info@mayr.ch **France**

Mayr France S.A.S. Z.A.L. du Minopole Rue Nungesser et Coli 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

USA

Mayr Corporation 10 Industrial Avenue Mahwah NJ 07430 Tel.: 2 01/4 45-72 10

Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com Italy

Mayr Italia S.r.I. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0498/79 10 20 Fax: 0498/79 10 22 info@mayr-italia.it

Representatives

Drive Systems Pty Ltd

12 Sommersby Court | Lysterfield | Victoria 3156 | Australia

Phone: +61(0) 3 9759 7100

Email: info@drivesystems.com.au

Web: www.drivesystems.com.au

Poland

Wamex Sp. z o.o. ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 15 90 80 Fax: 0 22/8 15 61 80 wamex@wamex.com.pl South Korea

Mayr Korea Co. Ltd.
Room No.1002, 10th floor,
Nex Zone, SK TECHNOPARK,
77-1, SungSan-Dong,
SungSan-Gu, Changwon, Korea

Tel.: 0 55/2 62-40 24 Fax: 0 55/2 62-40 25 info@mayrkorea.com Japan

MATSUI Corporation 2-4-7 Azabudai Minato-ku Tokyo 106-8641 Tel.: 03/35 86-41 41 Fax: 03/32 24 24 10 k.goto@matsui-corp.co.jp

Taiwan

German Tech Auto Co., Ltd.
No. 28, Fenggong Zhong Road,
Shengang Dist.,
Taichung City 429, Taiwan R.O.C.

Tel.: 04/25 15 05 66 Fax: 04/25 15 24 13 abby@zfgta.com.tw Netherlands

Groneman BV Amarilstraat 11 7554 TV Hengelo OV Tel.: 074/2 55 11 40 Fax: 074/2 55 11 09

aandrijftechniek@groneman.nl

Czech Republic

BMC - TECH s.r.o. Hviezdoslavova 29 b 62700 Brno

Tel.: 05/45 22 60 47 Fax: 05/45 22 60 48 info@bmc-tech.cz

More representatives:

Austria, Belgium, Brazil, Canada, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Luxembourg, Malaysia, New Zealand, Norway, Philippines, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand, Turkey

You can find the complete address for the representative responsible for your area under www.mayr.com in the internet.