DRIVE

() mayr
 ®

your reliable partner

ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$

Expert know-how in development and design

As the technological leader, mayr ${ }^{\circledR}$ power transmission focuses on continuous further development. Today, highly qualified engineers and technicians work on tomorrow's innovations using the most up-to-date tools. The years of experience and countless tests at the Development and Testing Department at the Mauerstetten Headquarters form the basis of conscientious lifetime dimensioning.

The values upheld by our traditional, family-run company also include long-term stability, independence as well as a good reputation and satisfied customers.

Therefore, we place emphasis on:

- Tested product quality,
- Optimum customer service,
- Comprehensive know-how,
- Global presence,
- Successful innovations and
- Effective cost management

Tested quality and reliability

mayr ${ }^{\circledR}$ brakes and couplings are subject to meticulous quality inspections. These include quality assurance measures during the construction process as well as a comprehensive final inspection. Only the best, tested quality leaves our factory. All products are rigorously tested on calibrated test stands, and adjusted precisely to the requested values. An electronic database in which the measurement values are archived together with the associated serial numbers guarantees 100% traceability. On request, we confirm the product characteristics with a test protocol.

The certification of our quality management according to DIN EN ISO 9001:2008 confirms the quality-consciousness of our colleagues at every level of the company.

Specialists for power transmission for more than a century

mayr ${ }^{\circledR}$ power transmission is one of the most traditional and yet most innovative companies in the field of power transmission. From modest beginnings in the year 1897, the family enterprise has developed into world market leader. Worldwide, the company employs more than 1000 people.

Unsurpassed - our standard range

mayr ${ }^{\circledR}$ power transmission offers an extensive variety of torque limiters, safety brakes, backlash-free shaft misalignment compensation couplings and high-quality DC drives. Numerous renowned machine manufacturers trust in solutions by mayr ${ }^{\circledR}$ power transmission.

Available worldwide

With eight subsidiaries in Germany, sales offices in the USA, France, Great Britain, Italy, Singapore and Switzerland as well as 36 additional country representatives, mayr ${ }^{\circledR}$ is available in all important industrial areas, guaranteeing optimum customer service around the globe.

Strongly positioned

mayr ${ }^{\circledR}$ sets standards in power transmission with economically viable solutions. For maximum competitiveness of your machines and systems, we always aim for the best possible cost efficiency, starting during the development of your clutch/coupling or brake right up to delivery of the finished and inspected product. For cost-efficient production, our factories in Poland and China represent the perfect supplement to the headquarters in Germany.

Subsidiary with production department - mayr ${ }^{\circledR \text {-China }}$

Never compromise on safety

We make no compromises where safety is concerned. Only top products of a perfect quality guarantee that no people are injured or machines damaged in case of malfunctions, collisions and other hazardous situations. The safety of your employees and machines is our motivation to always provide the best and most reliable clutches, couplings or brakes.
mayr ${ }^{\circledR}$ power transmission holds numerous ground-breaking patents, and is the global market or technological leader for

- application-optimised safety brakes, for example for passenger elevators, stage technology and gravity loaded axes
- torque limiters to protect against expensive overload damage and production losses and
- backlash-free servo couplings.

mayr ${ }^{\oplus}$-headquarters in Mauerstetten

Subsidiary with production department - mayr®-Poland
your reliable partner

ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$

Reliable dual circuit brake in accordance with DGUV Rule 115-002 (previously BGV C1), DIN 56950-1, EN 81-A3 and other international standards

Characteristics

- Dual circuit brake as redundant brake system with a very short construction length

- Microswitch or proximity switch can be mounted for release monitoring
- Simplest possible installation
- No air gap adjustment necessary
- Continuously low noise levels for several hundred thousand switchings
- From size 200 on, the brake types with release monitoring are approved as protection against excessive upwards speeds and are also compliant with EN 81-1:1998 + A3:2009.

The quietest safety brake

Due to a newly developed noise damping unit, the ROBA-stop ${ }^{\oplus}$ silenzio ${ }^{\circledR}$ is the quietest safety brake on the market, even in its standard version (pages 6 to 9). In new condition, the noise level is $<50 \mathrm{~dB}(\mathrm{~A})$ (sound pressure level measurement). This value lies well below the noise level of the mounted drive elements such as e.g. motor and gearbox. Further noise reduction is possible. We can accord with your request as far as noise levels are concerned, and guarantee our performance with a legally binding inspection protocol.

High operational safety

The ROBA-stop ${ }^{\oplus}$-silenzio ${ }^{\oplus}$ is available as a single circuit brake or as a dual circuit brake. On the dual circuit brake, two independently operating brake bodies ensure high operational safety. Certain variants of this brake type series fulfill the requirements acc. DGUV Rule 115-002 (previously BGV C1), DIN 56950-1, EN 81-A3 and can be designed according to the requirements stated in ASME A17.

Simple installation

The compact design as well as the single-part toothed hub ensures simple handling and installation. The working air gap is pre-set and needs no re-adjustment. This means that malfunctions due to operating and adjusting mistakes can be ruled out.

LR 108927

Safe choice due to large type and size variety
12 construction sizes in different designs fulfil the demands for elevator and stage drives with a braking torque range of $2 \times 3 \mathrm{Nm}$ to $2 \times 2150 \mathrm{Nm}$ and therefore cover all required operation areas.
If the power is switched off or in case of power failure or EMERGENCY STOP, the brakes ensure reliable and secure holding in any position; therefore, the brakes are intended mostly for static application as holding brakes

Optimised construction space

Due to new construction and removal of the complicated intermediate flange plate, we have been able to create a unique short construction length.

Duty cycle

The ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$ safety brakes are optimised for a relative duty cycle of 60%. For higher duty cycle, please contact the manufacturers. A duty cycle > 60% can lead to higher temperatures, which may influence the noise and switching behaviour of the brake.

Brake monitoring for maximum safety

The ROBA-stop ${ }^{\oplus}$-silenzio ${ }^{\circledR}$ safety brakes are configurable for comprehensive brake monitoring. They can guarantee maximum operational and functional safety due to the permanent monitoring of the brake condition and the optimisation of the friction system:

- safe brake control
- conditioning of the friction linings
- refreshing of the friction linings
- fail-safe release monitoring for checking the switching condition of the brake
- wear inspection of the friction linings
- monitoring and evaluation of the friction system temperature
- static and dynamic braking torque tests
your reliable partner

In addition to the standard brakes, mayr ${ }^{\circledR}$ power transmission provides a multitude of further designs, which cannot be described in detail in this catalogue.

For further options, please see page 15.

Short Description Installation	Page 12 D
Brake Dimensioning, Friction-Power Diagrams	Page 13 D
Further Options	Page 15 D
Switching Times	Page 16 D
Electrical Connection	Page 17 D
Contactless Release Monitoring	Page $20 D$
Electrical Accessories: DC Voltage Modules / Brake Control Module	Page $26 D$
Guidelines	

On request ROBA-stop ${ }^{\circledR}$ silenzio ${ }^{\circledR}$ brakes can also be delivered with UL approval.

ROBA-stop ${ }^{\oplus}{ }^{\text {-silenzio }}{ }^{\oplus}$ Type 896. ${ }_{1}^{0}$ - . 3_{-}- Sizes 4 to 100

Noises $<\mathbf{5 0 ~ d B (A) ~ (S o u n d ~ p r e s s u r e ~ l e v e l ~ m e a s u r e m e n t) ~ a t ~ n o m i n a l ~ b r a k i n g ~ t o r q u e ~}$

approx. 600 mm
at Sizes 4-100

Type 896.001.30 (Dual circuit brake)

Type 896.005.33
(Dual circuit brake)

Technical Data				Size					
				4	8	16	32	64	100
Nominal braking torque ${ }^{1)}$	Type 896.00_. 3 _	M_{N}	[Nm]	2×4	2×8	2×16	2×32	2×64	2×100
	Type 896.10_. ${ }_{\text {_ }}$	M_{N}	[Nm]	4	8	16	32	64	100
Electrical power	Type 896.00_. ${ }^{\text {_ }}$	P_{20}	[W]	2×23	2×31	2×33	2×45	2×55	2×63
	Type 896.10_. ${ }_{\text {_ }}$	P_{20}	[W]	23	31	33	45	55	63
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	4500	3500	2900	2500	2300	2000
Weight (pilot bored)	Type 896.000.3 _		[kg]	2×1.4	2×2.2	2×3.2	2×5.1	2×7.3	2×10.3
Nominal air gap (tolerance ± 0.07)		a	[mm]	0.45	0.5	0.5	0.5	0.5	0.5

1) Braking torque tolerance: $+0 \% /+60 \%$. For other braking torque adjustments: see Table below.

Braking Torque Adjustment [Nm]

	Size					
	4	8	16	32	64	100
Dual circuit brake Type 896.0__. 3						
100 \%	2×4	2×8	2×16	2×32	2×64	2×100
120 \%	2×5	2×10	2×19	2×40	2×77	2×120
75 \%	2×3	2×6	2×12	2×26	2×43	2×80
Single circuit brake Type 896.1 _ _ . 3 _						
100 \%	4	8	16	32	64	100
120 \%	5	10	19	40	77	120
75 \%	3	6	12	26	43	80

Bores [mm]

Type 896.101.30 (Single circuit

4) Over $\varnothing 22$ keyway acc. DIN 6885/3

Type 896.105.33

5) Over Ø 32 keyway acc. DIN 6885/3 6) Over Ø 44 keyway acc. DIN 6885/3

Type 896. ${ }_{1}^{0}$ - _. $\mathbf{3}_{-}$- Sizes 4 to 100
We reserve the right to make dimensional and constructional alterations.

Dimensions	Size					
	4	8	16	32	64	100
\varnothing D	88	108	130	153	168	195
$\varnothing \mathrm{D}_{1}$	88	108	130	153	168	195
F	50.5	64	79	88.5	97	111
F_{1}	112.5	123	166.5	175.6	235	249
F_{2}	105	128	158	175	190	222
\varnothing G	26	45	45	52	60	77
G_{1}	29	36	45	52	60	77
H	29	27	33	37	42	36
H_{1}	43	45.5	49	55	64	67
h	9	10	13	12	15	17
K	8.3	9	11.6	9.6	11.4	14.6
K	8	7.5	10.8	10.8	14	14
K_{2}	6.7	9.5	10.8	9	9.9	11.5
k	2.8	3.5	4	4	5.3	5.3
k_{1}	7.2	10.5	10.1	10.2	14.5	19.6
L	87	91	99	109	127	134
L_{1}	96	101	112	121	142	151
L_{2}	43.5	45.5	49	54.5	63.5	67
L_{3}	52.5	55.5	62	66.5	78.5	84
	50	52	58	67	75	79
1	Please observe the load on the shaft or key.					
	18	20	20	25	30	30
I_{1}	Please observe the load on the shaft or key.					
Ø M	72	90	112	132	145	170
$\varnothing M_{1}$	72	90	112	132	145	170
$\varnothing \mathrm{M}_{3}$	35	41	52	61	75	88
Ø R	60	75	93	110.5	124	139
\varnothing r	50	65	77	90	94	100
s	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 5$	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 8$	$3 \times \mathrm{M} 8$
s_{1}	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 5$	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 8$	$6 \times \mathrm{M} 8$
S_{2}	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 5$	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 8$	$3 \times \mathrm{M} 8$
S_{3}	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 5$	$3 \times \mathrm{M} 5$	$3 \times \mathrm{M} 5$
SW	7	8	10	10	13	13
SW ${ }_{1}$	3	4	5	5	6	6
SW	($20{ }^{7}$	11	14	14	17	17
t	10	10	10	10	10	10
$\mathrm{x}^{8)}$	± 0.5	± 0.5	± 1	± 1	± 1	± 1
$\beta\left[{ }^{\circ}\right]$	30	30	30	30	32	32

Order Number

Without additional parts ${ }^{9}$	$\mathbf{0}$
Hand release ${ }^{9}$)	$\mathbf{1}$
Release monitoring, mechanical	$\mathbf{2}$
Release monitoring, contactless	
Hand release / release monitoring, mechanical	A
Hand release / release monitoring, contactless ${ }^{\text {10) }}$	$\mathbf{3}$
Flange plate ${ }^{9}$)	B
Flange plate / release ${ }^{9}$	$\mathbf{4}$
Flange patat / hand release / release monitoring, mechanical	$\mathbf{5}$
Flange plate / hand release / release monitoring, contactless ${ }^{10}$	$\mathbf{6}$
Flange plate / release monitoring, mechanical	$\mathbf{7}$
Flange plate / release monitoring, contactless ${ }^{10}$	D

$\mathbf{0}$	$\mathbf{0}$	Without additional parts
$\mathbf{1}$	$\mathbf{1}$	Cover
$\mathbf{2}$	$\mathbf{2}$	Tacho attachment
A	$\mathbf{3}$	Cover/tacho attachment

voltage
[VDC]

Example: 100 / 896.001.30 / 24 / 40 / 6885/1

7) Hand release lever, round
8) Flush hub position (misalignment " x " permitted)
9) Only the brakes with release monitoring meet the requirements acc. BGV C 1 or DIN 56950-1
(Types 896._ _2.3_/ 896._ A.3_/ 896.__3.3_/ 896.__B.3_/ 896._ _6.3_/ 896.__C.3_/ 896._ _7.3_/ 896._ D.3_)
10) Contactless release monitoring device available from Size 8.

The standard contactless release monitoring device is designed as an NO contact; cable length standard: 1 m (Sizes 8-100).

ROBA-stop ${ }^{\oplus}$-silenzio ${ }^{\oplus}$ Type 896. ${ }_{1}^{0}$ - _.3_ - Sizes 200 to 1800

Noises $\mathbf{~} \mathbf{5 0 ~ d B (A) ~ (S o u n d ~ p r e s s u r e ~ l e v e l ~ m e a s u r e m e n t) ~ a t ~ n o m i n a l ~ b r a k i n g ~ t o r q u e ~}$

Type 896.001.30
(Dual circuit brake)

Technical Data				Size					
				200	300	500	800	1300	1800
Nominal braking torque ${ }^{1)}$	Type 896.00_3	M_{N}	[Nm]	2×200	2×300	2×500	2×800	2×1300	2×1800
	Type 896.10_3	M_{N}	[Nm]	200	300	500	800	1300	1800
Electrical power	Type 896.00_3	P_{20}	[W]	2×78	2×86	2×90	2×107	2×130	2×150
	Type 896.10_3	P_{20}	[W]	78	86	90	107	130	150
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	1700	1500	1300	1150	1000	900
Weight (pilot bored)	Type 896.000.3		[kg]	2×15.3	2×23	2×29	2×43.5	2×59.2	2×79.9
Nominal air gap (tolerance ± 0.07)		a	[mm]	0.5	0.5	0.5	0.5	0.5	0.5

1) Braking torque tolerance: $+0 \% /+60 \%$. For other braking torque adjustments: see Table below.

Braking Torque Adjustment [Nm]

	200	300	500	800	1300	1800
Dual circuit	pe 896	. 3				
100 \%	2×200	2×300	2×500	2×800	2×1300	2×1800
120 \%	2×240	2×360	2×600	2×1000	2×1560	2×2150
75 \%	2×150	2×225	2×380	2×600	2×980	2×1350
Single circu	Type 89	1 _ . 3				
100 \%	200	300	500	800	1300	1800
120 \%	240	360	600	1000	1560	2150
75 \%	150	225	380	600	980	1350

(1) At a braking torque adjustment of 120% (for Sizes 500 and 800) overexcitation (1.5 to $2 \times$ the nominal voltage) is required for safe and fast release, using our ROBA ${ }^{\oplus}$-switch fast acting rectifier (please contact mayr ${ }^{\oplus}$ power transmission if necessary).

Bores [mm]	Size					
	200	300	500	800	1300	1800
Dual circuit brake Type 896.0 _ . 3						
	25	35	45	53	66	76
	$50^{2)}$	$60^{3)}$	$70^{4)}$	75	90	$100{ }^{5)}$
	29	40	50	65	75	85
	$50^{2)}$	$60^{3)}$	65	75	90	95
	23	26	40	45	56	66
	$50^{2)}$	$60^{3)}$	$70^{4)}$	75	90	$100{ }^{5)}$
Single circuit brake Type 896.1__. 3						
	30	32	45	53	66	77
	$50^{2)}$	$60^{3)}$	$70{ }^{4)}$	75	90	$100{ }^{5)}$
	35	38	50	65	75	85
	48	$60^{3)}$	65	75	90	95
	24	24	40	45	56	66
	$50^{2)}$	$60^{3)}$	$70^{4)}$	75	90	$100{ }^{5}$

2) over Ø 48 keyway acc. DIN 6885/3 3) over Ø 56 keyway acc. DIN 6885/3 4) over Ø 65 keyway acc. DIN 6885/3 5) over Ø 95 keyway acc. DIN 6885/3

Types 896. ${ }_{1}^{0}$ - . $\mathbf{3}_{-}$- Sizes 200 to 1800
We reserve the right to make dimensional and constructional alterations.

Dimensions	Size					
	200	300	500	800	1300	1800
\varnothing D	223	261	285	329	370	415
$\varnothing \mathrm{D}_{1}$	223	264	288	332	373	418
F	126.5	148	166.5	on request	on request	on request
F_{1}	325.5	487.5	705.5	on request	on request	on request
F_{2}	256	296	310	on request	on request	on request
\varnothing G	84	96	114	135	146	160
\varnothing G	84	96	114	135	146	160
H	48	50.5	28.5	on request	on request	on request
H_{1}	76	79.5	86	on request	on request	on request
h	19	21	28	31	30	36
K	16.4	18.7	25.5	28	28	32
K_{1}	18	18	19	22	27	26
K_{2}	12.2	18.1	21.5	22.5	27.5	24.5
k	8.4	10	10	13	13	13
k_{1}	18	21	19	on request	on request	on request
L	152	159	172	189	199	205
L_{1}	171	180	200	220	229	241
L_{2}	76	79.5	86	94.5	99.5	102.5
L_{3}	95	100.5	114	125.5	129.5	138.5
I	88	93	102	122	142	152
	Please observe the load on the shaft or key.					
I_{1}	35	50	50	60	70	75
Ø M	196	Please observe the load on the shaft or key. 196 230 250 290 330				
$\varnothing M_{1}$	196	230	250	290	330	370
$\varnothing \mathrm{M}_{3}$	100	112	145	165	175	200
\varnothing R	170	188	213	246	283.5	320
Ør	122	135	150	180	208	230
s Type 896.0_ . 3	$3 \times \mathrm{M} 10$	$3 \times \mathrm{M} 12$	$6 \times \mathrm{M} 12$	$6 \times \mathrm{M} 16$	$8 \times \mathrm{M} 16$	$8 \times \mathrm{M} 16$
S Type 896.1_ . $3^{\text {_ }}$	$3 \times \mathrm{M} 10$	$3 \times \mathrm{M} 12$	$3 \times \mathrm{M} 12$	$3 \times \mathrm{M} 16$	$4 \times \mathrm{M} 16$	$4 \times \mathrm{M} 16$
s_{1}	$6 \times \mathrm{M} 10$	$6 \times \mathrm{M} 12$	$6 \times \mathrm{M} 16$	$6 \times \mathrm{M} 16$	$8 \times \mathrm{M} 16$	$8 \times \mathrm{M} 20$
S_{2}	$3 \times \mathrm{M} 10$	$3 \times \mathrm{M} 12$	$3 \times \mathrm{M} 16$	$3 \times \mathrm{M} 16$	$4 \times \mathrm{M} 16$	$4 \times \mathrm{M} 20$
S_{3}	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 6$	$6 \times \mathrm{M} 8$			
SW	16	18	18	24	24	24
SW ${ }_{1}$	8	10	14	14	14	17
SW 2	14	17	$\varnothing 25{ }^{\text {6) }}$	on request	on request	on request
t	10	10	13	13	13	13
\mathbf{x}^{7}	± 1	± 1	± 1	± 0.5	± 1	± 1
β [${ }^{\circ}$]	32	31	25	25	25	25

Order Number

Without additional parts ${ }^{8 /}$	0
Hand release ${ }^{\text {8) }}$	1
Release monitoring, mechanical	2
Release monitoring, contactless ${ }^{9}$)	A
Hand release / release monitoring, mechanical	3
Hand release / release monitoring, contactless ${ }^{9}$)	B
Flange plate ${ }^{8)}$	4
Flange plate / hand release ${ }^{8)}$	5
Flange plate / hand release / release monitoring, mechanical	6
Flange plate / hand release / release monitoring, contactless ${ }^{9}$	C
Flange plate / release monitoring, mechanical	7
Flange plate / release monitoring, contactless ${ }^{9}$	D

$\mathbf{0}$	Without additional parts
$\mathbf{1}$	Cover
$\mathbf{2}$	Tacho attachment
$\mathbf{3}$	Cover / tacho attachment

Coil	
voltage	
[VDC]	
24	We recommend connection
104	via smoothed DC voltage
180	or a
207	mayr${ }^{\text {B }}$-bridge rectifier.
\square	

Example: 200 / 896.001.30 / 24 / 40 / 6885/1
6) Hand release lever, round
 At a braking torque adjustment of $\mathbf{1 2 0} \%$ (for Sizes 500 and $\mathbf{8 0 0}$) overexcitation (1.5 to $2 x$ the nominal voltage) is required for safe and fast release, using our ROBA switch fast acting rectifier (please contact mayr ${ }^{\circledR}$ power transmission if necessary).
(misalignment " x " permitted)
Only the brakes with release monitoring meet the requirements acc. BGV C 1 or DIN 56950-1
(Types 896.__2.3_/ 896.__A.3_/ 896.__3.3_/ 896._ _B.3_/ 896._ _6.3_/ 896._ C.3_/ 896._ _7.3_/ 896._ D.3_).
9) The standard contactless release monitoring device is designed as an NO contact; cable length standard: 1 m (Size 200) or 2 m (Sizes 300-1800).

ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$ Double rotor design Type 896.2_ _.3_ - Sizes 300 to 1800

Noises $<\mathbf{6 5 ~ d B (A) ~ (S o u n d ~ p r e s s u r e ~ l e v e l ~ m e a s u r e m e n t) ~ a t ~ n o m i n a l ~ b r a k i n g ~ t o r q u e ~}$

Technical Data				Size				
				300	500	800	1300	1800
Nominal braking torque ${ }^{1)}$	Type 896.20_3 _	$M_{\text {N }}$	[Nm]	600	1000	1600	2600	3600
Electrical power	for overexcitation ${ }^{2)}$	P_{20}	[W]	348	352	412	500	552
	for nominal voltage	P_{20}	[W]	87	88	103	125	138
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	300	300	300	250	250
Weight	without flange plate		[kg]	33	44	67	93	121
	with flange plate		[kg]	40.5	53	80	113	153
Nominal air gap (tolerance $+\mathbf{0 . 1 5}$) -0.1		a	[mm]	0.55	0.55	0.55	0.7	0.7

1) Braking torque tolerance: $+0 \% /+60 \%$. For other braking torque adjustments: see Table below.
2) When using a ROBA ${ }^{\circledR}$-switch

Braking Torque Adjustment [Nm]

	Size					
	$\mathbf{3 0 0}$	$\mathbf{5 0 0}$	$\mathbf{8 0 0}$	$\mathbf{1 3 0 0}$	1800	
$\mathbf{1 0 0} \%$	600	1000	1600	2600	3600	
$\mathbf{1 2 0} \%$	720	1200	2000	3120	4300	
$\mathbf{7 5} \%$	450	760	1200	1960	2700	

At nominal braking torque 100% (for Sizes 500 and 800) and at a braking torque adjustment of 120 \% (for all Sizes) overexcitation (1.5 to $2 \times$ the nominal voltage) is required for safe and fast release, using our ROBA $^{\oplus}$-switch fast acting rectifier (please contact mayr ${ }^{\circledR}$ power transmission if necessary).

[^0]
Type 896.2 _ _. 3 _ - Sizes 300 to 1800

Dimensions	Size				
	300	500	800	1300	1800
b	90	102	114	125	130
\varnothing D	261	285	329	370	415
$\varnothing D_{1}$	264	288	332	373	418
$\varnothing D_{2}$	264	288	332	373	418
\varnothing F	209	152	181	197	225
\varnothing G	96	114	135	146	160
$\varnothing \mathrm{G}_{1}$	96	114	135	146	160
h	21	28	31	30	36
h_{1}	15	17	19	23	23
k	10	10	13	13	13
k_{1}	21	19	25	25	24
K	18.1	16.9	23.3	23.3	28.3
K	18	19	22	27	26
I	93	102	122	142	152
1	Please observe the load on the shaft or key.				
L	109.4	120.6	133.7	143.7	148.7
L_{1}	74.4	85.6	93.7	106.7	110.7
Ø M	230	250	290	330	370
$\varnothing \mathrm{M}_{3}$	112	145	165	175	200
Ør	135	150	180	208	230
\varnothing ¢	188	213	246	283.5	320
s	$3 \times \mathrm{M} 12$	$6 \times \mathrm{M} 12$	$6 \times \mathrm{M} 16$	$8 \times \mathrm{M} 16$	$8 \times \mathrm{M} 16$
s_{1}	$6 \times \mathrm{M} 12$	$6 \times \mathrm{M} 16$	$6 \times \mathrm{M} 16$	$8 \times \mathrm{M} 16$	$8 \times \mathrm{M} 20$
$S_{2}{ }^{6}$	M10	M10	M10	M12	M12
S_{3}	$3 \times \mathrm{M} 6$	$6 \times \mathrm{M} 8$			
SW	18/19	18/19	24	24	24
SW 1	10	14	14	14	17
SW 2	16/17	16/17	18/19	24	24
t	10	13	13	13	13
$\alpha\left[{ }^{\circ}\right]$	35	45	45	45	45
$\beta\left[{ }^{\circ}\right]$	31	25	25	25	25

Order Number

Example: 800 / 896.205.30 / 104 / 70 / 6885/1

6) Eyebolt (installation aid, not included in delivery)
7) Only the brakes with release monitoring meet the requirements acc. BGV C 1 or DIN 56950-1
(Types 896.2_2.3_/ 896.2_A.3_/ 896.2_3.3_/ 896.2_B.3_/ 896.2_6.3_/ 896.2_C.3_/ 896.2_7.3_/ 896.2_D.3_).
8) The standard contactless release monitoring device is designed as an NO contact; cable length standard: 2 m .

ROBA-stop ${ }^{\oplus}$-silenzio ${ }^{\oplus}$ - Short Description Installation Type $896 .{ }_{1}^{0}$ - . 3_{-}

Parts List (Only use mayr ${ }^{\circledR}$ original parts)

1	Hub assembly with 2 O-rings (2)	8	Hexagon head screw
1.1	*Hub assembly with 1 O-ring (2)	8.1	**Hexagon head screw
2	O-ring	10	Transportation lock
3	Coil carrier assemblies 1 and 2	14	Thrust spring
4	Armature disks 1 and 2	15	Shoulder screw
5	Rotor 1	16	Distance bolt
5.1	Rotor 2	* Only on single circuit brake	
6	Hand release assembly	designs	
6.1	Switch bracket	** Sizes 4-300 only on single	
6.2	Hand release rod	circuit brake designs	

Installation Conditions (Figs. 1, 2 and 3)

- The eccentricity of the shaft end in relation to the mounting pitch circle must not exceed 0.2 mm .
- The positional tolerance of the threads for the hexagon head screws (8 and 8.1) must not exceed 0.2 mm .
- The axial run-out deviation of the screw-on surface to the shaft must not exceed the permitted axial run-out tolerance acc. DIN 42955 R. The reference diameter is the pitch circle diameter for securement of the brakes. Larger deviations can lead to a drop in torque, to continuous grinding of the rotor and to overheating.
- The tolerances of the hub (1) and the shaft must be selected so that no widening of the hub (1) toothing can occur, as widening of the toothing leads to the rotors (5 and 5.1) jamming on the hub (1) and therefore to brake malfunctions (recommended hub - shaft tolerance H7/k6).
- The rotors (5 and 5.1) and brake surfaces must be oil and greasefree. A suitable counter friction surface (steel or cast iron) must be used. Sharp-edged interruptions on the friction surfaces must be avoided. Recommended surface quality in the area of the friction surface $\mathrm{Ra}=1.6 \mu \mathrm{~m}$. In particular customer-side mounting surfaces made of grey cast iron are to be rubbed down additionally with fine sandpaper (grain 400).

Short Description (Figs. 1 and 2)

Please find a detailed installation description in the Installation and Operational Instructions for the product (also at www.mayr.com).

1. Mount the hub assembly with the O-rings (Item 1 / O-rings must be slightly greased) onto the shaft, bring it into the correct position (the length of the key should lie over the entire hub) and secure it axially (e.g. using a locking ring).
2. Push rotor 1 (5) by hand using light pressure over both O-rings (2) onto the hub (1), so that the friction lining of rotor 1 (5) lies against the machine wall (the rotor collar should be facing away from the machine wall). Check that the toothing moves easily.
Do not damage the O-rings.
3. Push brake body 1 over hub (1) and rotor collar of rotor 1 (5) (the fixing holes should align with the threaded holes in the machine wall).
4. Push rotor 2 (5.1) by hand using light pressure over an O-ring (2) onto the hub (1), so that the friction lining of rotor 2 (5.1) lies against the brake body 1 (the rotor collar should be facing the machine wall). Check that the toothing moves easily.
Do not damage the O-ring.
5. Insert the hexagon head screws (8) into the bores in brake body 2 , which are equipped with distance bolts (16), and then join with brake body 1 and screw onto the machine wall. Tighten the hexagon head screws (8) evenly all around using a torque wrench to a tightening torque acc. Table 1.
6. Inspect air gaps "a" according to Table 1.

The nominal air gap must be given.

Hand Release

A hand release (6) is installed manufacturer-side, dependent on Size and Type (see Type key pages 7 and 9 and Table 1).
From Size 800, both circuits are released simultaneously with a lever (see Fig. 4).

Technical Data - Installation			Size											
			4	8	16	32	64	100	200	300	500	800	1300	1800
Nominal air gap	a	[mm]	$\begin{gathered} 0.45 \\ \pm 0.07 \end{gathered}$	$\begin{gathered} 0.5 \\ \pm 0.07 \end{gathered}$										
Release force per lever / at nominal torque	F	[N]	35	35	110	100	130	200	250	250	300	$\begin{gathered} \text { approx. } \\ 300 \end{gathered}$	$\begin{gathered} \text { approx } \\ 320 \end{gathered}$	$\begin{gathered} \text { approx. } \\ 350 \end{gathered}$
Actuation Angle Hand release	α	[${ }^{\circ}$]	15	15	15	15	15	15	15	15	-	-	-	-
Tightening torque Fixing screw Item 8	$\mathrm{T}_{\text {A }}$	[Nm]	3	5	10	13	30	36	71	123	123	250	250	300

ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$ - Brake Dimensioning

Brake Size Selection

1. Brake selection

$M_{\text {erf. }}=\frac{9550 \times P}{n} \times K \leq M_{N}$
$\mathrm{t}_{\mathrm{v}}=\frac{\mathrm{J} \times \mathrm{n}}{9.55 \times \mathrm{M}_{\mathrm{v}}}$
$t_{4}=t_{v}+t_{1}$
$M_{v}=M_{N}+(-)^{*} M_{L}$

2. Inspection of thermic load

$Q_{r}=\frac{J \times n^{2}}{182.4} \times \frac{M_{N}}{M_{v}}$ [J/ braking]

The permitted friction work (switching work) $Q_{r \text { zul. }}$ per braking for the specified switching frequency can be taken from the frictionpower diagrams (page 14).
If the friction work per braking is known, the max. switching frequency can also be taken from the friction-power diagrams (page 14).

Key:		
J	[kgm^{2}]	Mass moment of inertia
K	[-]	Safety factor ($1-3 \times$ according to conditions)
$M_{\text {erf. }}$	[Nm]	Required braking torque
M_{v}	[Nm]	Delaying torque
M_{L}	[Nm]	Load torque on system * sign in brackets (-) is valid if load is braked during downward
M_{N}	[Nm]	Nominal torque (Technical Data pages 6-10)
n	[rpm]	Speed
P	[kW]	Input power
t_{v}	[s]	Braking action
t_{1}	[s]	Connection time (Table 4, page 16)
t_{4}	[s]	Total switch-on time
Q_{r}	[J]	Friction work present per braking
$Q_{r 0.1}$	[J]	Friction work per 0.1 mm wear (Table 2)
$Q_{\text {rges. }}$	[J]	Friction work up to rotor replacement (Table 2)
$\mathrm{Q}_{\text {rzul. }}$	[J]	Permitted friction work (permitted switching work) per braking (page 14)

- Due to operating parameters such as sliding speed, pressing or temperature the wear values can only be considered guideline values.

Friction Work				Size											
				4	8	16	32	64	100	200	300	500	800	1300	1800
per 0.1 mm wear	Type 896.	$\mathrm{Q}_{\mathrm{r} 0.1}$	[10 $\left.{ }^{6} \mathrm{~J}\right]$	22	28	56	73	116	155	227	269	215	249	357	447
up to rotor replacement	Type 896.	$Q_{\text {rges }}$	[10 $\left.{ }^{6} \mathrm{~J}\right]$	33	112	336	365	464	465	1135	1345	860	747	1428	1788

Table 2

Mass Moment of Inertia Rotor + hub with $\mathrm{d}_{\text {max }}$			Size											
			4	8	16	32	64	100	200	300	500	800	1300	1800
ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\text {® }}$														
Type 896.00_.3_	$J_{\text {R+H }}$	[$10^{-4} \mathrm{kgm}^{2}$]	0.316	0.799	2.40	6.11	11.9	23.7	58.1	89.1	188	389	695	1110
Type 896.10_.3_	$J_{\text {R+H }}$	[$10^{-4} \mathrm{kgm}^{2}$]	0.156	0.393	1.14	2.92	5.82	11.3	28.3	46	93.5	193	348	558
Double rotor design														
Type 896.20_.3_	$J_{\text {R+H }}$	[$10^{-4} \mathrm{kgm}^{2}$]	-	-	-	-	-	-	-	89.1	188	389	695	1110

Table 3

ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$ - Friction-Power Diagrams
ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$ Type 896.10_.- _
$\mathrm{n}=1500 \mathrm{rpm}$
for Sizes 4 to 300
$\mathrm{n}=750 \mathrm{rpm}$
for Sizes 500 to 1300
$\mathrm{n}=500 \mathrm{rpm}$
for Size 1800

Permitted friction powers at higher speeds on request.

ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$ Double rotor design

Type 896.20_.- _
$\mathrm{n}=300 \mathrm{rpm}$
for Sizes 300 to 800
n = 250 rpm
for Sizes 1300 to 1800

Permitted friction powers at higher speeds on request.
your reliable partner

ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$ - Further Options

In addition to the standard brakes, mayr ${ }^{\circledR}$ power transmission provides a multitude of further designs, which cannot be described in detail in this catalogue.

Some of the most frequently requested options are:

- IP65 design with cover
- Dust-proof design with cover and cover plate
- Directly toothed shaft
- Terminal box
- ROBA ${ }^{\circledR}$-ES-attachment
- Customer-specific flange plate

Please contact mayr ${ }^{\circledR}$ for further information

IP65 design

The enclosed design (IP65)
is equipped with a cover (Item 1).

Fig. 5

Dust-proof design

The dust-proof design is equipped with a cover (Item 1) and with a cover plate (Item 2).

Fig. 6

Directly toothed shaft

Directly toothed shaft (Item 1)
for larger shaft diameters and
higher transmittable torques.

Fig. 7

Terminal box

Terminal box (Item 1) for the wiring and storage of rectifiers (ROBA ${ }^{\circledR}$-switch, bridge rectifier).

Fig. 8

ROBA ${ }^{\circledR-E S-a t t a c h m e n t ~}$

Space-saving connection of a ROBA ${ }^{\circledR}$-ES
shaft coupling (Item 1) directly onto the hub.
The flexible shaft coupling of the ROBA ${ }^{\circledR}$-ES Type series compensates for shaft misalignments and is vibrationdamping.

Fig. 9

Special flange plate

We offer a range of flange plates for customer-specific solutions, such as for example the special flange plate shown in Fig. 10 (Item 1) with customer-tailored centering (Item 2).

Fig. 10

ROBA-stop ${ }^{\oplus}$-silenzio ${ }^{\circledR}$ - Switching Times

The switching times are only valid for the braking torques stated in the catalogue.
According to directive VDI 2241, the switching times are measured at a sliding speed of $1 \mathrm{~m} / \mathrm{s}$ with reference to a mean friction radius. The brake switching times are influenced by the temperature, by the air gap between the armature disk and the coil carrier, which depends on the wear status of the linings, and by the type of voltage-limiting components.
The values stated in the Table are mean values which refer to the nominal air gap and the nominal torque on a warm brake.
Typical switching time tolerances are $\pm 20 \%$.
Please Observe: DC-side switching
When measuring the DC-side switching times (t_{11} - time), the inductive switch-off voltage peaks are according to VDE 0580 limited to values smaller than 1200 volts. If other voltage-limiting components and constructional elements are installed, this switching time t_{11} and therefore also switching time t_{1} increase.

Switching Times Types 896._O_ - -				Size											
				4	8	16	32	64	100	200	300	500	800	1300	1800
Nominal braking torque	Type 896.10_---	M_{N}	[Nm]	4	8	16	32	64	100	200	300	500	800	1300	1800
Connection time	DC-side switching	t_{1}	[ms]	33	46	99	121	110	160	190	245	260	270	270	300
	AC-side switching	t_{1}	[ms]	135	196	398	518	447	488	968	1087	1133	1231	1464	1920
Response delay on connection	DC-side switching	t_{11}	[ms]	6	9	20	32	34	35	60	60	65	65	80	100
	AC-side switching	t_{11}	[ms]	52	79	145	229	164	154	412	429	518	531	588	800
Separation time		t_{2}	[ms]	52	70	94	120	174	234	270	308	444	581	589	850

Table 4: Switching Times Type 896._0_._ _: ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$, Double Rotor design from Size 300

Diagram 4: Torque-Time Diagram

$$
\begin{array}{ll}
\text { Key: } & \\
M_{B r} & =\text { Braking torque } \\
M_{L} & =\text { Load torque } \\
t_{1} & =\text { Connection time } \\
t_{11} & =\text { Response delay on connection } \\
t_{2} & =\text { Separation time } \\
U_{N} & =\text { Coil nominal voltage }
\end{array}
$$

ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$ - Electrical Connection

Electrical Connection and Wiring

DC current is necessary for operation of the brake. The coil voltage is indicated on the Type tag as well as on the brake body and is designed according to the DIN IEC 60038 (± 10 \% tolerance). Operation can take place with alternating voltage using a rectifier or another suitable DC power supply. The connection possibilities can vary dependent on the brake equipment. Please follow the exact connections according to the Wiring Diagram. The manufacturer and the user must observe the applicable regulations and standards (e.g. DIN EN 60204-1 and DIN VDE 0580). Their observance must be guaranteed and double-checked!

Supply voltage requirements when operating noisedamped brakes

In order to minimise noise development of the released brake, it must only be operated via DC voltage with low ripple content. AC current operation can take place using a bridge rectifier or another suitable DC power supply.
Supplies whose output voltages have a high ripple content (e.g. a half-wave rectifier, phase angle control systems, ...) are not suitable for operation of the brake.
At variance with this, brakes specially dimensioned for overexcitation must be operated with the $\mathrm{ROBA}^{\circledR}$-switch fast acting rectifier.

Earthing Connection

The brake is designed for Protection Class I. This protection covers not only the basic insulation, but also the connection of all conductive parts to the protective conductor (PE) on the fixed installation. If the basic insulation fails, no contact voltage will remain. Please carry out a standardised inspection of the protective conductor connections to all contactable metal parts!

Device Fuses

To protect against damage from short circuits, please add suitable device fuses to the mains cable.

Switching Behaviour

The safe operational behaviour of a brake is to a large extent dependent on the switching mode used. Furthermore, the switching times are influenced by the temperature and the air gap between the armature disk and the coil carrier (dependent on the wear condition of the linings).

Magnetic Field Build-up

When the voltage is switched on, a magnetic field is built up in the brake coil, which attracts the armature disk to the coil carrier and releases the brake.

- Field Build-up with Normal Excitation

If the magnetic coil is energised with nominal voltage, the coil current does not immediately reach its nominal value. The coil inductivity causes the current to increase slowly as an exponential function. Accordingly, the build-up of the magnetic field takes place more slowly and the braking torque drop (curve 1, Fig. above) is also delayed.

- Field Build-up with Overexcitation

A quicker drop in braking torque is achieved if the coil is temporarily placed under a higher voltage than the nominal voltage, as the current then increases more quickly. Once the brake is released, it needs to be switched over to the nominal voltage (curve 2, Fig. above). The relationship between overexcitation and separation time t_{2} is roughly indirectly proportional. This means that, using overexcitation voltage U_{0} (= doubled nominal voltage $\left.U_{N}\right)$, the separation time t_{2} for release of the brake is halved. The ROBA ${ }^{\circledR}$ switch fast acting rectifier works on this principle.

Operation with overexcitation requires an inspection of :

- the required overexcitation time *
- as well as the RMS coil capacity ** with a cycle frequency higher than 1 cycle per minute.

* Overexcitation time t_{0}

Increased wear, and therefore an increasing air gap as well as coil heating lengthen the separation times t_{2} for the brake.
For this reason, at least double the separation time t_{2} at nominal voltage must be selected as overexcitation time t_{0} on each brake size

The spring forces also influence the brake separation times t_{2} : Higher spring forces increase the separation times t_{2} and lower spring forces reduce the separation times t_{2}.

- Spring force (braking torque adjustment) < 100% :

The overexcitation time t_{0} is less than the doubled separation time t_{2} on each brake size.

- Spring force (braking torque adjustment) $=100 \%$:

The overexcitation time t_{0} equals the doubled separation time t_{2} on each brake size.

- Spring force (braking torque adjustment) > 100 \%:

The overexcitation time t_{0} is higher than the doubled separation time t_{2} on each brake size.

** RMS coil capacity \mathbf{P}

The coil capacity P must not be larger than P_{N}. Otherwise the coil may fail due to thermic overload.

Calculations:

P [W] RMS coil capacity dependent on switching frequency, overexcitation and duty cycle

$$
P=\frac{P_{\mathrm{O}} \times t_{\mathrm{O}}+P_{N} \times t_{N}}{T}
$$

$P_{N} \quad[W] \quad$ Coil nominal capacity (catalogue values, Type tag)
$P_{0} \quad[W] \quad$ Coil capacity on overexcitation

$$
P_{o}=\left(\frac{U_{0}}{U_{N}}\right)^{2} \times P_{N}
$$

$t_{0} \quad[s] \quad$ Overexcitation time
$\mathrm{t}_{\mathrm{N}} \quad[\mathrm{s}] \quad$ Time of operation with coil nominal voltage
$\mathrm{t}_{\text {off }}$ [s] Time without voltage
$\mathrm{t}_{\mathrm{on}} \quad[\mathrm{s}] \quad$ Time with voltage
$\mathrm{T} \quad[\mathrm{s}] \quad$ Total time $\left(\mathrm{t}_{\mathrm{O}}+\mathrm{t}_{\mathrm{N}}+\mathrm{t}_{\text {off }}\right)$
$U_{0} \quad[\mathrm{~V}] \quad$ Overexcitation voltage (bridge voltage)
$\mathrm{U}_{\mathrm{N}} \quad[\mathrm{V}] \quad$ Coil nominal voltage

Time Diagram:

ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$ - Electrical Connection

Magnetic Field Removal

- AC-side Switching

The power circuit is interrupted in front of the rectifier. The magnetic field slowly reduces. This delays the rise in braking torque.

When switching times are not important, please switch ACside, as no protective measures are necessary for the coil and the switching contacts

- DC-side Switching

The power circuit is interrupted between the rectifier and the coil as well as mains-side. The magnetic field reduces extremely quickly. This causes a quick rise in braking torque.

When switching DC-side, high voltage peaks are produced in the coil, which lead to wear on the contacts from sparks and to destruction of the insulation.

DC-side switching means short brake engagement times (e.g. for EMERGENCY STOP operation); however, louder switching noises.

AC-side switching means low-noise switching; however, the brake engagement time is longer (approx. 6-10 times longer than with DC-side switch-off), use for non-critical braking times.

- Protection Circuit

When using DC-side switching, the coil must be protected by a suitable protection circuit according to VDE 0580, which is integrated in mayr ${ }^{\circledR}$ rectifiers. To protect the switching contact from consumption when using DC-side switching, additional protective measures are necessary (e.g. series connection of switching contacts). The switching contacts used should have a minimum contact opening of 3 mm and should be suitable for inductive load switching. Please make sure on selection that the rated voltage and the rated operating current are sufficient. Depending on the application, the switching contact can also be protected by other protection circuits (e.g. mayre-spark quenching unit), although this may of course then alter the switching times

Switching example

The mayr ${ }^{\circledR}$-rectifiers shown in the Figure below serve as a switching example (e. g. combined switching for the elevator industry).

Contactless
 Release Monitoring

- Wear-free
- Robust
- Magnetic field-resistant
- Absolutely reliable

Optionally NO or NC Contacts

The contactless release monitoring system can be designed either as an NO or NC contact. With the NC contact function, the 'High' signal is generated if the brake is switched when de-energised. Here the armature disk drops and the brake closes. Initiator cable breakage is recognised when the brake is closed.

With the NO contact function, the 'High' signal is generated if the brake is energised and the armature disk releases the rotor. The brake is released. Only on generation of the 'High' signal is the motor enabled for start up. This reliably prevents the motor from starting up against a closed brake. Cable breakage is recognised when the brake is open.

Technical Data

Operating voltage	$10 \ldots 30 \mathrm{VDC}$
DC rated operating current	$<150 \mathrm{~mA}$
Ambient temperature	-25 up to $+85^{\circ} \mathrm{C}$
Repetitive accuracy	$<0.015 \mathrm{~mm}$
Hysteresis	$<0.025 \mathrm{~mm}$
Temperature drift	$<+-0.05 \mathrm{~mm}$
$\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$	

Wiring Diagram

Electrical Accessories - Functions of the DC Voltage Modules

no overexcitation
and
no power reduction

Page 22

Type
017._00.2

ROBA ${ }^{\circledR}$-switch

APPLICATION

Bridge

Page 21

Example
Available:
Wanted:
mains voltage 230 VAC
short separation time (overexcitation)
Required: supply module / coil nominal voltage
Solution:

- Supply module: Type 017._00.2
- Coil nominal voltage: 104 VDC

For detailed information on our DC voltage modules, please go to: www.mayr.com

Bridge Rectifier Type 025.000.6

Application

Rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBAstop ${ }^{\circledR}$, ROBA-quick ${ }^{\circledR}$, ROBATIC ${ }^{\circledR}$), electromagnets, electrovalves, contactors, switch-on safe DC motors, etc.

Function

The AC input voltage (VAC) is rectified (VDC) in order to operate DC voltage units. Also, voltage peaks, which occur when switching off inductive loads and which may cause damage to insulation and contacts, are limited and the contact load reduced.

Electrical Connection (Terminals)
$1+2$ Input voltage
$3+4$ Connection for an external switch for DC-side switching
$5+6$ Coil
7-10 Free nc terminals (only for Size 2)

Order Number

Technical Data

Calculation output voltage			VDC = VAC $\times 0.9$	
Type			1/025	2/025
Max. input voltage $\pm 10 \%$	$U_{A C}$	[VAC]	230	230
Max. output voltage	$U_{\text {DC }}$	[VDC]	207	207
Output current	$\mathrm{I}_{\text {RMS }}$	[A]	2.5	2.5
	$\mathrm{I}_{\text {RMS }}$	[A]	1.7	1.7
$U_{A C}=115 \mathrm{VAC} \leq 50^{\circ} \mathrm{C}$	P_{N}	[W]	260	260
$\mathrm{AC}=115 \mathrm{VAC}$ up to $85^{\circ} \mathrm{C}$	P_{N}	[W]	177	177
$U=230$ VAC $\leq 50^{\circ} \mathrm{C}$	P_{N}	[W]	517	517
Max. $\quad \mathrm{AC}=230 \mathrm{VAC}$ up to $85^{\circ} \mathrm{C}$	P_{N}	[W]	352	352
coil nominal $\leq 50^{\circ} \mathrm{C}$	P_{N}	[W]	-	-
capacity $\quad U_{A C}=400 \mathrm{VAC}$ up to $85^{\circ} \mathrm{C}$	P_{N}	[W]	-	-
at $\quad U=500 \mathrm{VAC} \leq 50^{\circ} \mathrm{C}$	P_{N}	[W]	-	-
$\mathrm{AC}=500 \mathrm{VAC}$ up to $85^{\circ} \mathrm{C}$	P_{N}	[W]	-	-
$U_{\text {AC }}=600 \mathrm{VAC} \frac{\leq 50{ }^{\circ} \mathrm{C}}{\text { up to } 85}$	P_{N}	[W]	-	-
	P_{N}	[W]	-	-
Peak reverse voltage		[V]	1600	1600
Rated insulation voltage	$\mathrm{U}_{\text {RMS }}$	[$\mathrm{V}_{\text {RMS }}$]	320	320
Pollution degree (insulation coordination)			1	1
Device fuses			To be included in the input voltage line.	
Recommended microfuse switching capacity H The microfuse corresponds to the max. possible connection capacity. If fuses are used corresponding to the actual capacities, the permitted limit integral $l^{2} t$ must be observed on selection.			FF 3.15 A	FF 3.15 A
Permitted limit integral	12 t	[$A^{2} \mathrm{~s}$]	40	40
Protection			IP65 components, encapsulated / IP20 terminals	
Terminals			Cross-section $0.14-1.5 \mathrm{~mm}^{2}$ (AWG 26-14)	
Ambient temperature		[${ }^{\circ} \mathrm{C}$]	-25 up to +85	
Storage temperature		[${ }^{\circ} \mathrm{C}$]	$-40^{\circ} \mathrm{C}$ up to $+85{ }^{\circ} \mathrm{C}$	
Conformity markings			UL, CE UL, CE	
Installation conditions			The installation po sufficient heat dissip	ned. Please ensure Do not install near at!

ROBA ${ }^{\circledR}$-switch Type 017._00.2

Application

ROBA $^{\circledR}$-switch fast acting rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop ${ }^{\oplus}$, ROBA ${ }^{\oplus}$-quick, ROBATIC ${ }^{\circledR}$) as well as electromagnets, electrovalves, etc.
Fast acting rectifier ROBA ${ }^{\circledR}$-switch 017._00.2

- Consumer operation with overexcitation or power reduction
- Input voltage: $100-500$ VAC
- Maximum output current $\mathrm{I}_{\text {RMS }}: 3 \mathrm{~A}$ at 250 VAC
- UL-approved

Function

The ROBA ${ }^{\circledR}$-switch units are used for operation at an input voltage of between 100 and 500 VAC, dependent on size. They can switch internally from bridge rectification output voltage to half-wave rectification output voltage. The bridge rectification time can be modified from 0.05 to 2 seconds by exchanging the external resistor $\left(R_{\text {ext }}\right)$.

Electrical Connection (Terminals)

$1+2$ Input voltage (fitted protective varistor)
$3+4$ Connection for external contact for DC-side switch-off
$5+6$ Output voltage (fitted protective varistor)
$7+8 \quad \mathrm{R}_{\text {ext }}$ for bridge rectification time adjustment

Technical Data

Input voltage
Output voltage
Protection
Terminal nom. cross-section
Ambient temperature
Storage temperature
see Table 1
see Table 1
IP65 components, IP20 terminals, IP10 R
$1.5 \mathrm{~mm}^{2}$ (AWG 22-14)
$-25^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}$

ROBA $^{\circledR}$-switch Sizes, Table 1

Order Number

Dimensions (mm)

Type 017.000.2

Mounting bracket set for 35 mm rail acc. EN 60715: Article No. 1802911

Type 017.100.2

Accessories:
Mounting bracket set for 35 mm rail
acc. EN 60715:
Article No. 1802911

ROBA ${ }^{\circledR}$-switch 24V Type 018.100.2

Application

ROBA ${ }^{\circledR}$-switch 24 V fast switching modules are used to operate DC consumers with overexcitation or power reduction, for example electromagnetic brakes and clutches (ROBA-stop ${ }^{\circledR}$, ROBA ${ }^{\circledR}$-quick, ROBATIC ${ }^{\circledR}$), electromagnets, electrovalves, etc.

Fast acting rectifier ROBA ${ }^{\circledR}$-switch 24V 018.100.2

- Consumer operation with overexcitation or power reduction
- Integrated DC-side disconnection (shorter connection time t_{1})
- Input voltage: 24 VDC
- Max. output current $\mathrm{I}_{\text {RMS }}$: 5 A
- UL-approved

The ROBA ${ }^{\circledR}$-switch 24 V with integrated DC-side disconnection is not suitable for being the only safety disconnection in applications!

Function

The ROBA ${ }^{\circledR}$-switch 24 V units are used for an input voltage of 24 VDC. They can switch internally, meaning that the output voltage switches to holding voltage from the input voltage (=overexcitation voltage) via pulse-width modulation using 20 kHz . The overexcitation time can be adjusted via a DIP switch to $150 \mathrm{~ms}, 450 \mathrm{~ms}, 1 \mathrm{~s}$, 1.5 s and 2.15 s . The holding voltage can be adjusted via a further DIP switch to $1 / 4,1 / 3,1 / 2$ and $2 / 3$ of the input voltage (equals $6 \mathrm{~V}, 8 \mathrm{~V}$, 12 V and 16 V at an input voltage of 24 V).
Apart from this, the $\mathrm{ROBA}^{\circledR}$-switch 24 V has an integrated DC-side disconnection. In contrast to the usual DC-side disconnection, no further protective measures or external components are required. The DC-side disconnection is activated in standard mode and causes short switching times on the electromagnetic consumer. This can, however, be deactivated by installing a bridge between terminals 7 and 8 in order to produce soft brakings and quieter switching noises. However, this substantially lengthens the switching times (approx. 6-10x).

Electrical Connection (Terminals)

$2+3$ Input voltage, ground
4 Control input
5-7 Input voltage +24 VDC
$8+9$ Output voltage +
10 Output voltage -

Technical Data

Input voltage $\mathrm{U}_{\text {, }}$

Output voltage U_{0}
Output voltage U_{H}
Output current $\mathrm{I}_{\text {RMS }}$ at $\leq 45^{\circ} \mathrm{C}$
Output current $I_{\text {RMS }}$ at max. $70^{\circ} \mathrm{C}$
Protection
Terminal nominal cross-section
Ambient temperature
Storage temperature

24 VDC + 20 \% / - 10 \%
SELV/PELV
Input voltage U_{1}
$1 / 4,1 / 3,1 / 2,2 / 3 \times U_{1} \pm 20 \%$
5.0 A
2.5 A

IP00
$1.5 \mathrm{~mm}^{2}$ (AWG 22-14)
$-25^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}$

Order Number

$\underset{\substack{\text { Size } \\ 1}}{\triangle} / 0 \quad 1 \quad 8.1000 .2$

Dimensions (mm)

Spark Quenching Unit Type 070.000.6

E189728

Application

Reduces spark production on the switching contacts occurring during DC-side switch-off of inductive loads.

- Voltage limitation according to VDE 0580 2000-07, Item 4.6.
- Reduction of EMC-disturbance by voltage rise limitation, suppression of switching sparks.
- Reduction of brake engagement times by a factor of 2 - 4 compared to freewheeling diodes.

Function

The spark quenching unit will absorb voltage peaks resulting from inductive load switching, which can cause damage to insulation and contacts. It limits these to 70 V and reduces the contact load. Switching products with a contact opening distance of $>3 \mathrm{~mm}$ are suitable for this purpose.

Electrical Connection (Terminals)

1 (+) Input voltage
2 (-) Input voltage
3 (-) Coil
4 (+) Coil
5 Free nc terminal
6 Free nc terminal

Technical Data

Input voltage

Switch-off energy
Power dissipation
Rated voltage nc terminals
Protection
Ambient temperature Storage temperature Max. conductor connection diameter Max terminal tightening torque
max. 300 VDC, max. $615 \mathrm{~V}^{\text {mak }}$ (rectified voltage 400 VAC, $50 / 60 \mathrm{~Hz}$)
max. 9J/2 ms
max. 0.1 Watt
250 V
IP65 components, IP20 terminals
$-25^{\circ} \mathrm{C}$ up to $+85^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ up to $+85^{\circ} \mathrm{C}$
$2.5 \mathrm{~mm}^{2}$ (AWG 26-12)
0.5 Nm

Accessories

Mounting bracket set for 35 mm rail acc. EN 60715:
Article-No. 180320

Order Number

The Safe Brake Control ROBA ${ }^{\circledR}$-SBCplus Type 021.100.2

Technical Data

Electrical connection
Supply voltage logic
Supply voltage power

Inputs:

Safe inputs
Standard inputs
Monitoring times

Outputs:

Supply voltage
Acknowledgement outputs

Test pulse outputs
Power outputs
Continuous operation
Continuous operation
Overexcitation
Overexcitation
Reduced voltages

24VDC -15\%/+20\%
24 VDC or $48 \mathrm{VDC} \pm 10 \%$

4 (Y10 - Y23)
4 (S35, S36, Y1, Y2)
$30 \mathrm{~ms} . . .4000 \mathrm{~ms}$

24V 0.1A
24V 0.1A
O3 fault message
O4 Status circuit 1
O5 Status circuit 2
T0, T1, 24V, 0.1A
O1, O2
$24 \mathrm{~V} 2 \times 4.5 \mathrm{~A}$ max.
$48 \mathrm{~V} 2 \times 2.25 \mathrm{~A}$ max.
$24 \mathrm{~V} 2 \times 6.5 \mathrm{~A}$ max.
$48 \mathrm{~V} 2 \times 3.25 \mathrm{~A}$ max.
$6 / 8 / 12 / 16 / 24 \mathrm{~V} \pm 10 \%$

Overexcitation times Cycle frequency Ambient temperature Protection Installation
Dimensions $45 \times 100 \times 120 \mathrm{~mm}$
Connection terminal $\quad 0.20-2.5 \mathrm{~mm}^{2}, 24-12$ AWG
Clamping terminals per connection

2

Certification:

Type examination tested by TÜV (German Technical Inspectorate), CE

Function:

- Safe control of 2 independent brakes
- Release monitoring via proximity switch or microswitch
- Fast or slow brake switch-off
- Safe monitoring of the switching times
- Parameterisation of the values
- Programmed and validated safety functions
- Safe signal output to the higher-level switching condition control

Application Example

ROBA-stop ${ }^{\oplus}$-silenzio ${ }^{\circledR}$ - Guidelines

Guidelines on the Declaration of Conformity: A conformity evaluation has been carried out for the product (electromagnetic safety brake) in terms of the EC low voltage directive 2006/95/EC. The Declaration of Conformity is laid out in writing in a separate document and can be requested if required.
Guidelines on the EMC Directive (2004/108/EC): The product cannot be operated independently according to the EMC directive. Due to their passive state, brakes are also non-critical equipment according to the EMC. Only after integration of the product into an overall system can this be evaluated in terms of the EMC. For electronic equipment, the evaluation has been verified for the individual product in laboratory conditions, but not in the overall system.
Guidelines on the Machinery Directive (2006/42/EC): The product is a component for installation into machines according to the Machinery Directive 2006/42/EC. The brakes can fulfil the specifications for safety-related applications in coordination with other elements. The type and scope of the required measures result from the machine risk analysis. The brake then becomes a machine component and the machine manufacturer assesses the conformity of the safety device to the directive. It is forbidden to start use of the product until you have ensured that the machine accords with the regulations stated in the directive.
Guidelines on the ATEX Directive: Without a conformity evaluation, this product is not suitable for use in areas where there is a high danger of explosion. For application of this product in areas where there is a high danger of explosion, it must be classified and marked according to directive 94/9/EC

Safety Regulations

Brakes may generate several risks, among others:

During the risk assessment, the dangers involved must be evaluated and removed by taking appropriate protective measures.
To prevent injury or damage, only professionals and specialists are allowed to work on the devices. They must be familiar with the dimensioning, transport, installation, initial operation, maintenance and disposal according to the relevant standards and regulations.

Application Conditions

The catalogue values are guideline values which have been determined in test facilities. It may be necessary to carry out your own tests for the intended application. When dimensioning the brakes, please remember that installation situations, braking torque fluctuations, permitted friction work, run-in behaviour and wear as well as general ambient conditions can all affect the given values. These factors should therefore be carefully assessed, and alignments made accordingly.
\square Mounting dimensions and connection dimensions must be adjusted according to the size of the brake at the place of installation.
\square The magnetic coils are designed for a relative duty cycle of 100%. However, a duty cycle > 60 \% leads to higher temperatures, which cause premature ageing of the noise damping and therefore lead to an increase in switching noises.
\square The braking torque is dependent on the run-in condition of the brake.
\square The brakes are only designed for dry running. The torque is lost if the friction surfaces come into contact with oil, grease, water or similar substances or foreign bodies.
I Manufacturer-side corrosion protection of the metallic surfaces.
] The rotors may rust up and block in corrosive ambient conditions and/or after long periods of storage.

Ambient Temperature: - $20^{\circ} \mathrm{C}$ up to $+40^{\circ} \mathrm{C}$

Earthing Connection

The brake is designed for Protection Class I. This protection covers not only the basic insulation, but also the connection of all conductive parts to the protective conductor (PE) on the fixed installation. Please carry out a standardised inspection of the protective conductor connections to all contactable metal parts

Protection

(mechanical) IP10: Protection against large body surfaces and large foreign bodies $>50 \mathrm{~mm}$ in diameter. No protection against water. (electrical) IP54: Dust-proof and protected against contact as well as against water spray from any direction.

Intended Use

mayr ${ }^{\circledR}$-brakes have been developed, manufactured and tested in compliance with the VDE 0580 standard and in accordance with the EU Low Voltage Directive as electromagnetic components. During installation, operation and maintenance of the product, the requirements for the standard must be observed. mayr ${ }^{\circledR}$-brakes are for use in machines and systems and must only be used in the situations for which they are ordered and confirmed. Using them for any other purpose is not allowed.

Guidelines for Electromagnetic Compatibility (EMC)

In accordance with the EMC directives 2004/108/EC, the individual components produce no emissions. However, functional components e.g. mains-side energisation of the brakes with rectifiers, phase demodulators, ROBA $^{\circledR}$-switch devices or similar controls can produce disturbance which lies above the allowed limit values.
For this reason it is important to read the Installation and Operational Instructions very carefully and to keep to the EMC Directives.

Regulations, Standards and Directives Used

VDE 0580

2006/95/EC
95/16/EC
EN 81-1

BGV C1
CSA C22.2 No. 14-2010
UL 508 (Edition 17)
EN ISO 12100

EN 61000-6-4
EN 12016

EN 60204-1

Liability

- The information, guidelines and technical data in these documents were up to date at the time of printing. Demands on previously delivered brakes are not valid.
- Liability for damage and operational malfunctions will not be taken if:
- the Installation and Operational Instructions are ignored or neglected.
- the brakes are used inappropriately.
- the brakes are modified.
- the brakes are worked on unprofessionally.
- the brakes are handled or operated incorrectly.

Guarantee

- The guarantee conditions correspond with the Chr. Mayr GmbH + Co. KG sales and delivery conditions
- Mistakes or deficiencies are to be reported to mayr ${ }^{\circledR}$ at once!
your reliable partner

Product Summary

Safety Clutches/Overload Clutches

\square EAS $^{\circledR}$-Compact ${ }^{\circledR} / E A S^{\circledR}$-NC/EAS ${ }^{\circledR}$-smartic ${ }^{\circledR}$
Positive locking and completely backlash-free torque limiting clutches

- EAS ${ }^{\circledR}$-reverse

Reversing, re-engaging torque limiter
$\square E A S^{\circledR}$-element clutch/EAS ${ }^{\circledR}$-elements
Load-disconnecting protection against high torquesEAS ${ }^{\circledR}$-axial
Exact limitation of tensile and compressive forces
\square EAS $^{\circledR}-\mathbf{S p} /$ EAS $^{\circledR}-$ Sm/EAS ${ }^{\circledR}$-Zr
Load-disconnecting torque limiting clutches with switching function

ROBA ${ }^{\oplus}$-slip hub
Load-holding, frictionally locked torque limiting clutches

- ROBA ${ }^{\circledR}$-contitorque

Magnetic continuous slip clutches
\square EAS $^{\circledR}$-HSC/EAS ${ }^{\circledR}$-HSE
High-speed safety clutches for high-speed applications

Shaft Gouplings

\square smartflex ${ }^{\circledR} /$ primeflex $^{\circledR}$
Perfect precision couplings for servo and stepping motors
\square ROBA $^{\circledR}$-ES
Backlash-free and damping for vibration-sensitive drives

- ROBA ${ }^{\circledR}$-DS/ROBA ${ }^{\oplus}$-D

Backlash-free, torsionally rigid all-steel couplings

- ROBA ${ }^{\circledR}$-DSM

Cost-effective torque-measuring couplings

Electromagnetic Brakes/Clutches

\square ROBA-stop ${ }^{\circledR}$ standard
Multifunctional all-round safety brakes

- ROBA-stop ${ }^{\circledR}$-M motor brakes

Robust, cost-effective motor brakes
\square ROBA-stop ${ }^{\text {® }}$-S
Water-proof, robust monoblock brakesROBA $^{\circledR}$-duplostop ${ }^{\circledR} /$ ROBA $^{\circledR}$-twinstop ${ }^{\circledR} /$ ROBA-stop $^{\circledR}$-silenzio ${ }^{\circledR}$
Doubly safe elevator brakes
\square ROBA $^{\circledR}$-diskstop ${ }^{\circledR}$

Compact, very quiet disk brakes
\square ROBA $^{\circledR}$-topstop ${ }^{\circledR}$
Brake systems for gravity loaded axesROBA ${ }^{\oplus}$-linearstop
Backlash-free brake systems for linear motor axesROBA ${ }^{\circledR}$-guidestop
Backlash-free holding brake for profield rail guides
ROBATIC ${ }^{\circledR} /$ ROBA $^{\circledR}$-quick/ROBA ${ }^{\circledR}$-takt
Electromagnetic clutches and brakes, clutch brake units

DC Drives

tendo ${ }^{\circledR}$-PM

Permanent magnet-excited DC motors

Chr. Mayr GmbH + Co. KG
Eichenstraße 1, D-87665 Mauerstetten
Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 4421
www.mayr.com, E-Mail: info@mayr.com

Service Germany/Austria

Baden-Württemberg
Esslinger Straße 7
70771 Leinfelden-Echterdingen
Tel.: 07 11/45 96010
Fax: 07 11/45 960110

Bavaria

Industriestraße 51
82194 Gröbenzell
Tel.: 081 42/50 19 80-7

North

Schiefer Brink 8 32699 Extertal
Tel.: 057 54/9 2077
Fax: 057 54/9 2078

Chemnitz

Bornaer Straße 205
09114 Chemnitz
Tel.: 03 71/4 741896
Fax: 03 71/4 741895

Rhine-Main

Kreuzgrundweg 3a
36100 Petersberg
Tel.: 06 61/96 210215

Franken

Unterer Markt 9
91217 Hersbruck
Tel.: 091 51/81 4864
Fax: 091 51/81 6245

Austria

Pummerinplatz 1, TIZ I, A27
4490 St. Florian, Austria
Tel.: 072 24/2 20 81-12
Fax: 072 24/2 208189

Branch office

China

Mayr Zhangjiagang
Power Transmission Co., Ltd.
Fuxin Road No.7, Yangshe Town
215637 Zhangjiagang
Tel.: 05 12/58 91-75 67
Fax: 05 12/58 91-75 66
info@mayr-ptc.cn

Singapore
Mayr Transmission (S) PTE Ltd.
No. 8 Boon Lay Way Unit 03-06, TradeHub 21
Singapore 609964
Tel.: 00 65/65 601230
Fax: 00 65/65 601000
info@mayr.com.sg

Great Britain

Mayr Transmissions Ltd.
Valley Road, Business Park Keighley, BD21 4LZ
West Yorkshire
Tel.: 015 35/66 3900
Fax: 015 35/66 3261
sales@mayr.co.uk

Switzerland

Mayr Kupplungen AG
Tobeläckerstraße 11 8212 Neuhausen am Rheinfal
Tel.: 0 52/6 740870
Fax: 0 52/6 740875
info@mayr.ch

France

Mayr France S.A.S. Z.A.L. du Minopole

Rue Nungesser et Coli
62160 Bully-Les-Mines
Tel.: 03.21.72.91.91
Fax: 03.21.29.71.77
contact@mayr.fr

USA

Mayr Corporation
10 Industrial Avenue

Mahwah

NJ 07430
Tel.: 2 01/4 45-72 10
Fax: 2 01/4 45-80 19
info@mayrcorp.com

Italy

Mayr Italia S.r.l.
Viale Veneto, 3
35020 Saonara (PD)
Tel.: 0498/79 1020
Fax: 0498/79 1022
info@mayr-italia.it

Turkey

Representative Office Turkey
Kucukbakkalkoy Mah.
Brandium Residence R2
Blok D:254
34750 Atasehir - Istanbul, Turkey
Tel.: 02 16/2 322044
Fax: 02 16/5 044172
info@mayr.com.tr

Representatives

Australia
Drive Systems Pty Ltd.
12 Sommersby Court
Lysterfield, Victoria 3156
Australien
Tel.: 0 3/97 597100
dean.hansen@drivesystems.com.au

Poland
Wamex Sp. z o.o.
ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 159080 Fax: 0 22/8 156180 wamex@wamex.com.pl

India
National Engineering
Company (NENCO)
J-225, M.I.D.C.
Bhosari Pune 411026
Tel.: 0 20/27 130029
Fax: 0 20/27 130229 nenco@nenco.org

South Korea

Mayr Korea Co. Ltd.
15, Yeondeok-ro 9beon-gi Seongsan-gu
51571 Changwon-si
Gyeongsangnam-do. Korea
Tel.: 0 55/2 62-40 24
Fax: $055 / 262-4025$
info@mayrkorea.com

Japan

MATSUI Corporation
2-4-7 Azabudai
Minato-ku
Tokyo 106-8641
Tel.: 03/35 86-41 41
Fax: 03/32 242410
k.goto@matsui-corp.co.jp

Taiwan

German Tech Auto Co., Ltd.
No. 28, Fenggong Zhong Road, Shengang Dist.,
Taichung City 429, Taiwan R.O.C.
Tel.: 04/25 150566
Fax: 04/25 152413
abby@zfgta.com.tw

Netherlands

Groneman BV
Amarilstraat 11
7554 TV Hengelo OV
Tel.: 074/2 551140
Fax: 074/2 551109
aandrijftechniek@groneman.nl

Czech Republic

BMC - TECH s.r.o
Hviezdoslavova 29 b 62700 Brno
Tl.: 05/45 226047
Fax: 05/45 226048 info@bmc-tech.cz

More representatives:

Belgium, Brazil, Canada, Colombia, Croatia, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia,
Israel, Luxembourg, Malaysia, Mexico,New Zealand, Norway, Philippines, Portugal, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand

[^0]: 3) over $\varnothing 56$ keyway acc. DIN 6885/3
 4) over $\varnothing 65$ keyway acc. DIN 6885/3
