

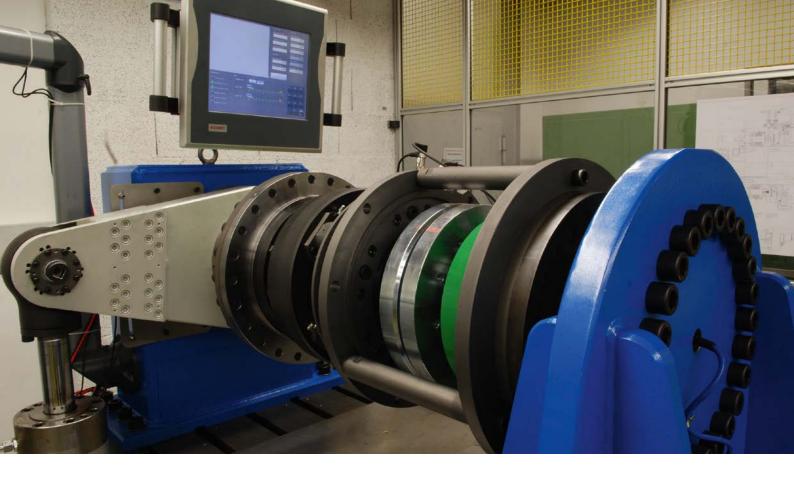
Reliable <u>H</u>igh <u>Torque</u> safety clutches for heavy load applications

K.4050.V00.EN

Always in use

EAS[®]-HT safety clutches for heavy load applications prolong the availability of your production systems.

They increase your profit, prevent damage caused by overload and save costs.


EAS®-HT safety clutches

the reliable, non-destructive overload protection

- Disengaging
- Steplessly adjustable
- Precise
- Compact
- Robust

www.mayr.com

Tested safety

For more than 40 years, we have been dimensioning, developing and manufacturing safety clutches for heavy load applications.

You can rely on the tested reliability and safety of our heavy load clutch.

Experts, not experiments

as safety does not allow for compromises

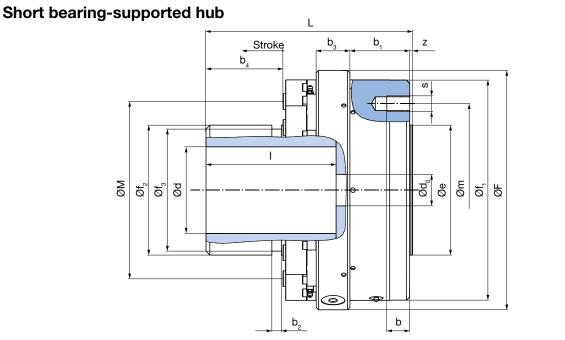
EAS®-HT short bearing-supported hub	Torque: 4 to 40 kNm Sizes 7 to 10 Type 40500400	 Direct attachment of the drive element on the bearing-supported, output-side clutch flange. The bearing is able to absorb high additional forces in axial and radial directions.
EAS®-HT lastic	Torque: 4 to 40 kNm Sizes 7 to 10 Type 40530400	 Double shaft design with a flexible, positive locking coupling Absorbs impact-type loads
EAS®-HT flange design	Torque: 7.5 to 440 kNm Sizes 0 to 6 Type 4060.71400	 Compact, ready-to-install module Can easily be integrated into the drive line Page 10
EAS®-HT Toothed coupling	Torque: 7.5 to 440 kNm Sizes 0 to 6 Type 4061.71400	 Double shaft design Toothed coupling with crowned teeth cutting Robust and temperature-resistant High misalignment compensation capability
EAS [®] -HT backlash-free	Torque: 7.5 to 140 kNm Sizes 0 to 4 Type 4062.71400	 Double shaft design with a torsionally rigid, backlash-free disk pack coupling High torsional rigidity Backlash-free torque transmission Maintenance-free
EAS®-HT lastic bolt	Torque: 40 to 260 kNm Sizes 3 to 5 Type 4063.70400	 Double shaft design with a flexible, positive locking coupling Absorbs impact-type loads

EAS[®]-HT Options

Customer-specific designs Low temperature design Alternative shaft connections ATEX

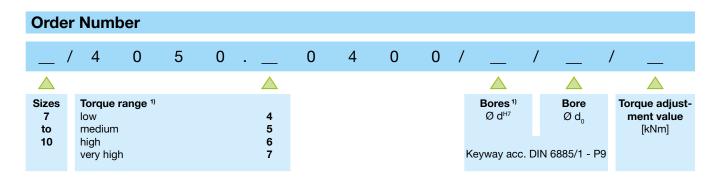
EAS®-elements Standard Reinforced 	 Torque limiting or force limiting elements Installation into two flanges located towards one another Integration into existing constructions possible
as-	Page 20
Technical Explanations	Page 23
General Pre-selection	
Misalignment compensation capability	

Additional branch-optimised EAS® safety clutches


tre

High-speed clutches EAS [®] -HSE	Torque: 100 to 8.400 Nm	Reliable overload protection at high speeds
	Sizes 02 to 0 Type 40404	
	iype 40404	For more information as well as detailed Technical Data and Dimensions, please see our product catalogue EAS®-HSC/ EAS®-HSE.
Extruder clutches	Torque: 70 to 17.000 Nm	Protect extruder screws
EAS [®] -dutytorque		from expensive damage caused by overload
	Sizes 2 to 9	
	Type 40431400	For more information as well as detailed Technical Data and Dimensions, please see our product catalogue EAS®-dutytorque.
Rustproof design		Corrosion-protected safety clutches for env-
Rost.		ironmental and waste water technology

Page 18



EAS[®]-HT

Type 4050._0400 Sizes 7 to 10

Example: Order Number 8 / 4050.60400 / 90 / 35 / 84050.60400 / 90 / 35 / 8

1) Position of the keyway to the tapped hole "s" in the thrust piece is not defined. Defined position available on request.

EAS®-element clutch

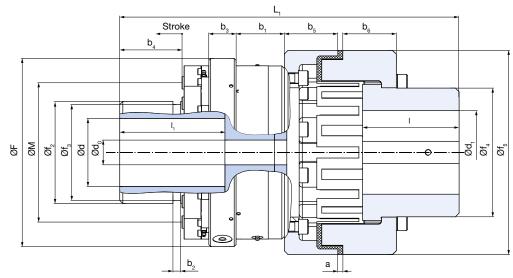
Technical Data			Sizes				
Technical Da	la			7	8	9	10
	Туре 4050. 4 0400	M_{G}	[kNm]	1.3 - 2.6	1.6 - 3.2	4 - 8	5 - 10
	Number of	EAS®-el	ements	2	2	2	2
Ţ	Туре 4050. 5 0400	M_{G}	[kNm]	2 - 4	3.2 - 6.4	6 - 12	10 - 20
Limit torques for overload	Number of	EAS [®] -elements		3	4	3	4
for overload	Туре 4050. 6 0400	M_{G}	[kNm]	2.6 - 5.2	4.8 - 9.6	8 - 16	15 - 30
	Number of	Number of EAS®-elements		4	6	4	6
	Туре 4050. 7 0400	M_{G}	[kNm]	4 - 8	6.5 - 13	12 - 24	20 - 40
	Number of	EAS®-el	ements	6	8	6	8
Sizes EAS®-elem	nents			0	0	1	1
Maximum speed	1	n _{max}	[rpm]	3000	2800	2500	2200
Bolt stroke on o	verload		[mm]	6	6	8	8

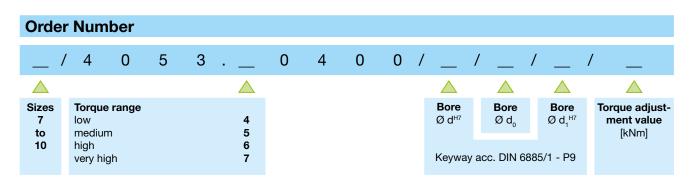
Max. permitted forces on the flange con-			Sizes			
nection			7	8	9	10
Radial forces Type 40500400	F _R	[kN]	15	20	30	40
Axial forces	F _A	[kN]	10	15	20	30

Mass moments of inertia and weights				Sizes			
wass momen	is of mertia and w	eignt	5	7	8	9	10
EAS [®] -hub-side	Type 40500400	J	[kgm ²]	0.18	0.38	1.05	2.37
Flange side	Type 40500400	J	[kgm ²]	0.17	0.38	1.3	2.65
Weight at d _{max}	Type 40500400		[kg]	47	76	145	232

Porco [mm]		Sizes				
Bores [mm]		7	8	9	10	
EAS [®] -hub-side	d _{max}	90 ^{H7}	110 ^{H7}	135 ^{H7}	160 ^{H7}	
Flange side	d _{0 max}	30	40	48	58	

Dimensions		Siz	es	
[mm]	7	8	9	10
b	25	30	35	35
b ₁	66	78	94	110
b ₂	12.5	12.5	15	15
b ₃	44	44	56	56
b ₄	70.5	100.5	119.3	159.3
e _{h7}	147	165	242	276
F	260	304	380	450
f ₁	237.5	279.5	359.5	417.5
f ₂	120	165	190	245
f ₃	110	155	180	230
L	228	270	330	387
I	140	170	210	250
М	180	225	270	340
m	190	220	285	325
S	8xM16	8xM20	8xM24	12xM24
z	4	4	5	6


We reserve the right to make dimensional and constructional alterations.


EAS®-HT

lastic

Type 4053._0400 Sizes 7 to 10

Example: Order Number 8 / 4053.60400 / 90 / 35 /115 / 8

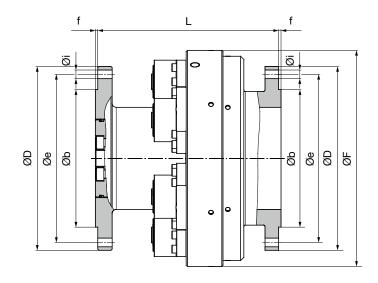
EAS®-element clutch

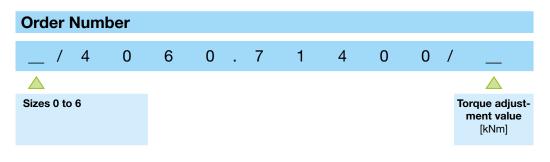
Technical Data					Sizes			
Technical Data			7	8	9	10		
	Туре 4053.4	i 0400	M_{G}	[kNm]	1.3 - 2.6	1.6 - 3.2	4 - 8	5 - 10
	N	umber of	EAS®-e	lements	2	2	2	2
	Туре 4053.	50400	M_{G}	[kNm]	2 - 4	3.2 - 6.4	6 - 12	10 - 20
Limit torques for overload	N	umber of	EAS®-e	lements	3	4	3	4
	Туре 4053.	6 0400	M_{G}	[kNm]	2.6 - 5.2	4.8 - 9.6	8 - 16	15 - 30
	N	Number of EAS®-elements			4	6	4	6
	Туре 4053. 7 0400		M_{G}	[kNm]	4 - 8	6.5 - 13	12 - 24	20 - 40
	N	umber of	EAS®-e	lements	6	8	6	8
Sizes EAS®-elem	ents				0	0	1	1
Maximum speed			n _{max}	[rpm]	2250	2000	1500	1400
Bolt stroke on ov	verload			[mm]	6	6	8	8
	Permitted	axial	ΔK_{a}	[mm]	±2.5	±2.5	±2.5	±2.5
Flexible shaft coupling	misalign-	radial	ΔK _r	[mm]	0.3	0.3	0.3	0.3
shart coupling	ments 1)	angular	ΔK	[mm]	0.3	0.3	0.3	0.3
Nominal and max	kimum torque	es,	T _{KN}	[kNm]	5.8	9.9	20.5	28
flexible coupling			T _{K max}	[kNm]	8.3	14.5	27	66

Mass moments of inartia and weights			Sizes				
Mass moments of inertia and weights		7	8	9	10		
Mass moments of	EAS [®] -hub-side	J	[kgm ²]	0.18	0.38	1.05	2.37
inertia	Flexible side	J	[kgm ²]	0.57	1.62	5.0	10.7
Weight at d _{max}			[kg]	85	154	282	464

Bores [mm]		Sizes				
		7	8	9	10	
EAS [®] -hub-side	d _{max}	90 ^{H7}	110 ^{H7}	135 ^{H7}	160 ^{H7}	
Bearing flange	d _{o max}	30	40	48	58	
Flexible side	d _{1 max}	115 ^{H7}	135 ^{H7}	180 ^{H7}	200 ^{H7}	

Dimensions	Sizes			
[mm]	7	8	9	10
а	5.5	8	8	8
b,	66	78	94	110
b ₂	12.5	12.5	15	15
b ₃	44	44	56	56
b ₄	70.5	100.5	119.3	159.3
b ₅	76	86.5	102	108
b ₆	76	86.5	102	108
F	260	304	380	450
f ₂	120	165	190	245
f ₃	110	155	180	230
f ₄	164	208	275	289
f ₅	265	330	415	480
L,	469.5	548.5	668	754
I	137	156	196	220
l ₁	140	170	210	250
М	180	225	270	340


We reserve the right to make dimensional and constructional alterations. 1) The values refer to 1500 rpm.


EAS[®]-HT

flange design

Type 4060.71400 Sizes 0 to 6

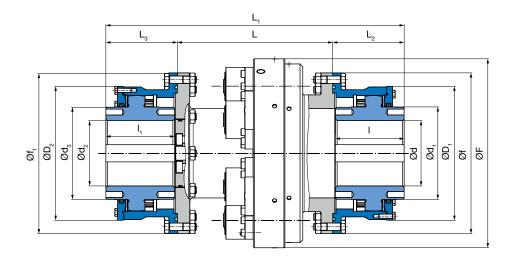
Example: Order number 5/ 4060.71400 / 200

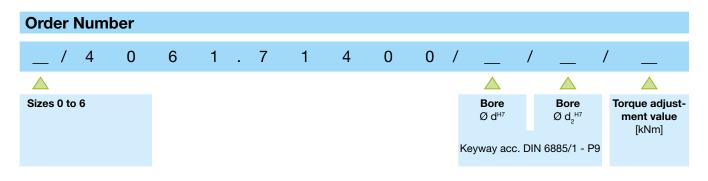
EAS[®]-element clutch

Technical Data			Sizes							
			0	1	2	3	4	5	6	
Limit torques for overload	M_{G}	[kNm]	7.5 - 15	12.5 - 25	20 - 40	37.5 - 75	70 - 140	125 - 250	220 - 440	
Number of EAS®-elements			6	8	6	8	12	10	10	
Sizes EAS [®] -elements			0	0	1	1	1	2	2 ¹⁾	
Maximum speed	n _{max}	[rpm]	2000	1750	1500	1250	1000	900	750	
Bolt stroke on overload		[mm]	6	6	8	8	8	12	12	

Mass moments of inertia an	Sizes								
Wass moments of mertia an	u we	igins	0 1 2 3 4 5				5	6	
EAS [®] -element-side	J	[kgm²]	0.25	0.5	1.16	2.71	5.51	16.29	27.87
EAS [®] -pressure flange side	J	[kgm²]	0.19	0.37	0.96	2.05	4.22	10.29	19.3
Weight at d _{max}		[kg]	56	77	142	212	303	627	814

Dimensions				Sizes			
[mm]	0	1	2	3	4	5	6
b _{h7}	175	230	255	310	340	460	540
е	214	269	306	360	400	531	618
D	234	292	330	390	430	567	660
F	275	320	380	455	545	640	740
f	3	3	4	4	5	6	6
i	11	13	13	17	17	21	25
L	226	243	298	312	328	476	485


We reserve the right to make dimensional and constructional alterations.


EAS®-HT

Toothed coupling

Type 4061.71400 Sizes 0 to 6

Example: Order number 4 / 4061.71400 / 180 / 200 / 90

EAS®-element clutch

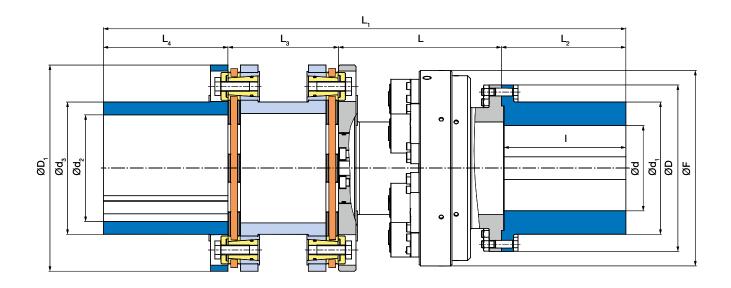
Technical D	oto							Sizes			
Technical D	ลเล				0	1	2	3	4	5	6
Limit torques f	or overload		M_{G}	[kNm]	7.5 - 15	12.5 - 25	20 - 40	37.5 - 75	70 - 140	125 - 250	220 - 440
Number of EAS	[®] -elements				6	8	6	8	12	10	10
Sizes EAS®-eler	ments				0	0	1	1	1	2	2 ¹⁾
Maximum spee	ed		n _{max}	[rpm]	2000	1750	1500	1250	1000	900	750
Bolt stroke on	overload			[mm]	6	6	8	8	8	12	12
T	Permitted	axial	ΔK_{a}	[mm]	±2	±3	±3	±3	±3	±4	±4
Toothed cou- pling	misalign-	radial	ΔK _r	[mm]	7.5	8.6	10.2	11.7	12.4	18.4	20.6
ments ^{1) 2)} angular		ΔK_w	[mm]	1.25	1.25	1.25	1.25	1.25	1.25	1.25	
Nominal and m	Nominal and maximum torques, T _{KN} [kNm]		12.5	25	40	63	100	250	400		
curved-tooth c	oupling		T _{K max}	[kNm]	25	50	80	12.6	200	500	800

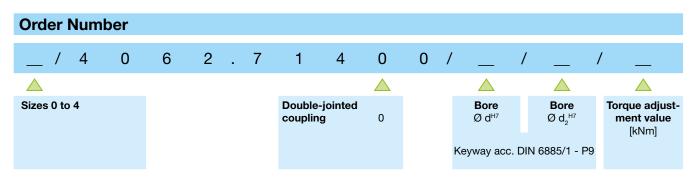
The values refer to 1500 rpm.
 Per joint

Mass moments of inartis on	Sizes								
Mass moments of inertia an	u wei	gnis	0	1	2	3	4	5	6
EAS [®] -pressure flange side	J	[kgm ²]	0.27	0.65	1.48	3.33	6.43	19.17	39.74
EAS®-element side	J	[kgm ²]	0.34	0.78	1.69	3.99	7.72	25.18	48.3
Weight at d _{max} / d _{2max}		[kg]	83	132	220	345	488	1053	1523

Porce [mm]	Sizes							
Bores [mm]		0	1	2	3	4	5	6
EAS [®] -pressure flange side	d _{max}	95	130	150	185	210	285	340
EAS [®] -element side	d _{2 max}	95	130	150	185	210	285	340

Dimensions				Sizes			
[mm]	0	1	2	3	4	5	6
d,	135	185	210	255	290	400	480
d ₃	135	185	210	255	290	400	480
D ₁	195	251	288	337	375	502	584
D ₂	195	251	288	337	375	502	584
F	275	320	380	455	545	640	740
f	234	292	330	390	430	567	660
f ₁	234	292	330	390	430	567	660
L	226	242.5	298	312	328	476	485
L,	434	502.5	588	685	740	1012	1125
L ₂	104	130	145	186.5	206	268	320
L ₃	104	130	145	186.5	206	268	320
I.	100	125	140	180	200	260	310
L,	100	125	140	180	200	260	310


We reserve the right to make dimensional and constructional alterations.


EAS[®]-HT

backlash-free

Type 4062.71400 Sizes 0 to 4

Example: Order number 4 / 4062.71400 / 180 / 200 / 90

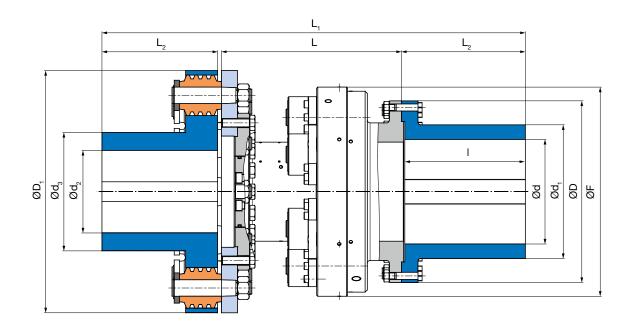
EAS®-element clutch

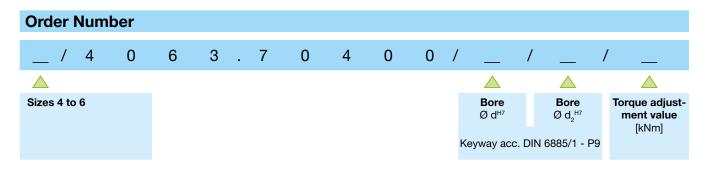
Technical Det							Sizes		
Technical Dat	.a				0	1	2	3	4
Limit torques for	overload		M_{G}	[kNm]	7.5 - 15	12.5 - 25	20 - 40	37.5 - 75	70 - 140
Number of EAS®-	elements				6	8	6	8	12
Sizes EAS®-eleme	ents				0	0	1	1	1
Maximum speed	Maximum speed		n _{max}	[rpm]	2000	1750	1500	1250	1000
Bolt stroke on ov	verload			[mm]	6	6	8	8	8
	Permitted	axial	ΔK_{a}	[mm]	1.6	1.7	2.1	2.3	2.3
Torsionally rigid shaft coupling	misalign-	radial	ΔK_r	[mm]	1.0	1.0	1.1	1.3	1.4
Shart coupling	ments 1)	angular	ΔK_w	[°]	0.4	0.4	0.4	0.4	0.4
Nominal and maximum torques,		T _{KN}	[kNm]	22	33	50	73	110	
torsionally rigid a	orsionally rigid all-steel coupling		T _{K max}	[kNm]	44	66	100	146	220

1) The values refer to 1500 rpm.

Mass mom	Mass moments of inertia and weights				Sizes		
Wass more				1	2	3	4
Mass moment	s of Hub side	J [kgn	²] 0.35	0.76	1.58	3.68	6.56
inertia	torsionally rigid side	J [kgn	²] 0.86	1.73	3.5	7.1	13.95
Weight at d_{max}	Weight at d _{max} [g] 132	195	308	468	665
Bores [mm]	1				Sizes		
Dores [mm]			0	1	2	3	4
Hub-side		d _{max}	140	170	180	220	240
Torsionally rigi	id side	d _{2 max}	140	160	180	210	240

Dimensions			Sizes		
[mm]	0	1	2	3	4
d ₁	186	230	243	300	321
d ₃	186	215	243	279	321
D	234	292	330	390	430
D ₁	290	332	378	431	492
F	275	320	380	455	545
L	229	245.5	302	316	330
L,	735	811.5	934	1054.5	1173
L ₂	175	200	225	265	310
L ₃	155.6	166	182	208.4	223
L_4	175	200	225	265	310
I	171	195	219	260	302


We reserve the right to make dimensional and constructional alterations.


EAS®-HT

lastic bolt

Type 4063.70400 Sizes 4 to 6

Example: Order number 4 / 4063.70400 / 270 / 180 / 90

EAS®-element clutch

Technical De	ta					Sizes	
Technical Da	เส				4	5	6
Limit torques for overload			M_{G}	[kNm]	40 - 80	72.5 - 145	130 - 260
Number of EAS®-	elements				12	10	10
Sizes EAS®-elem	ents				1	2	2
Maximum speed	i		n _{max}	[rpm]	1000	900	750
Bolt stroke on o	verload			[mm]	8	12	12
	Permitted	axial	ΔK_{a}	[mm]	±4	±4	±4
Flexible shaft coupling	misalign-	radial	ΔK _r	[mm]	1.5	1.5	1.5
onarcoouping	ments 1)	angular	ΔK_w	[mm]	4.6	5.3	6.4
Nominal and ma	Nominal and maximum torques,		Τ _{κΝ}	[kNm]	48	100	160
flexible coupling	exible coupling		T _{K max}	[kNm]	96	200	320

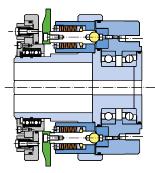
Masa maman	Mass moments of inertia and weights				Sizes			
mass moments of inertia and weights				4	5	6		
Mass moments of	f Hub side	J	[kgm ²]	6.6	20.02	39.63		
inertia	Flexible side	J	[kgm ²]	22.35	55.18	110.68		
Weight at d _{max}			[kg]	706	1407	1956		

Bores [mm]		Size			
		4	5	6	
Hub-side	d _{max}	240	300	340	
Flexible side	d _{2 max}	225	250	320	

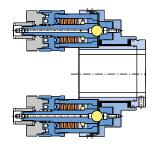
Dimensions	Sizes				
[mm]	4	5	6		
d,	321	420	500		
d ₃	320	360	450		
D	430	567	660		
D,	660	760	920		
F	545	640	740		
L	375	533	543		
L,	946	1201	1231		
L ₂	310	350	370		
L ₃	250	300	300		
I	302	342	362		

We reserve the right to make dimensional and constructional alterations.

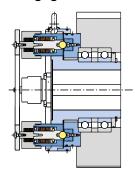
1) The values refer to 1500 rpm.

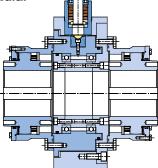

EAS®-HT Options

For the EAS®-HT clutches, designs specially created according to customer requests and different variants are also available.


 $\mathsf{EAS}^\circledast\text{-}\mathsf{HT}$ clutches can be combined with additional attachment parts.

We are happy to advise you on the dimensioning and configuration of your optimum design.


EAS[®]-HT with automatic re-engagement


EAS®-HT with mechanical disengagement

EAS®-HT with engagement bowl

EAS[®]-HT radial

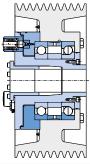
After overload occurrence, the EAS®-HT safety clutch is disengaged. It is possible to engage the EAS®-HT safety clutch via remote control by means of automatic re-engagement. Re-engagement can be carried out pneumatically, hydraulically, electromechanically or mechanically.

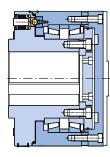
Mechanical disengagement device for the $\mathsf{EAS}^{\circledast}\xspace$ elements.

The EAS $\ensuremath{^{\circ}}\xspace$ -elements can be disengaged individually mechanically.

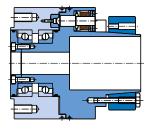
Engagement without aids.

Automatic engagement device for low operating speeds. Direct overload query possible through switching disk.


EAS[®]-HT radial for small construction space length values and low to medium operating speed values.



EAS®-HT Options


EAS[®]-HT with integrated drive elements

EAS®-HT for roller gears

Frictionally-locking shaft-hub connection

EAS®-HT low temperature design

ATEX design

 $\mathsf{EAS}^{\circledast}\text{-}\mathsf{HT},$ integrated attachment of sprocket and toothed wheels, V-belt disks etc.

Highest torques at lowest diameters. The alternative to hydraulic clamping sets and shear pins in rolling mills.

Frictionally-locking shaft-hub connections:

- Shrink disk (see Fig.)
- External shrink disk
- Oil press fit

Reliable overload protection in case of very low temperatures to -48 °C.

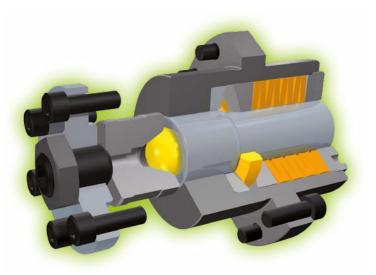
(Please contact the manufacturer separately for this).

EAS®-HT safety clutches are also available in ATEX design according to the directive 94/9 EC (ATEX 95).

(Please contact the manufacturer separately for this).

EAS®-element

Application


- EAS®-elements for installation in two bearing-supported flanges facing each other or for integration into existing constructions
- □ As EAS[®]-HT safety clutch component
- □ For customer-specific constructions

Applications

- Conveyor belts
- □ Crushers
- Rolling mills
- □ Underground mining / mining
- $\hfill\square$ Raw material extraction

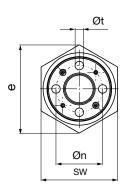
Advantages/Benefits

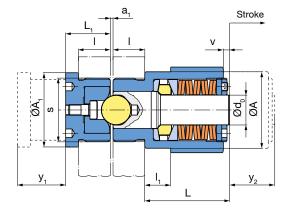
- □ Safe overload protection
- $\hfill\square$ Can be used flexibly and in modular form
- □ Maximum performance density
- □ Release forces adjustable
- Easy and quick engagement
- □ Large number of disengagement procedures

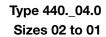
Rustproof design available on request

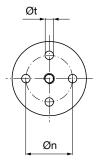
Function:

Positive locking transmission of circumferential force and axial force. In case of overload, the EAS[®]-elements separate the input and output mechanically, so that the system can slow down freely. Manual re-engagement of the individual elements (automatic reengagement available on request).

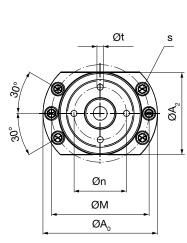

The catalogue contains basic information on pre-selection and dimensioning.

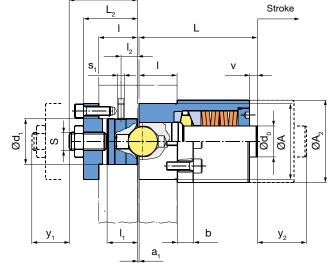

For detailed information on selection, dimensioning, installation, initial operation and maintenance, please see the Installation and Operational Instructions.

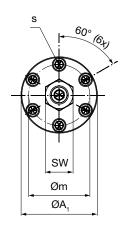



EAS[®]-element

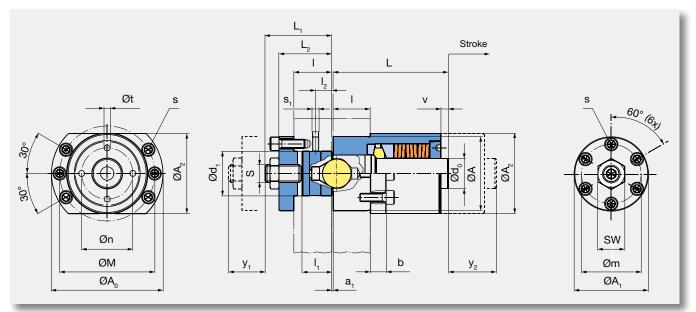
Standard







Type 440._04.0 Sizes 0 to 2



L₁

Reinforced

Type 441.604.0 Sizes 0 to 2

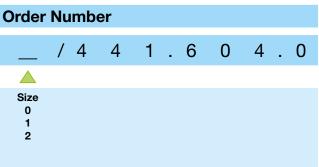


EAS®-element

Technical Data				Sizes				
Technical Dat	a			02	01	0	1	2
	Type 440.404.0 (Low torque range)	F _{u min}	[kN]	0.22	1	1.8	5	4
		F _{u max}	[kN]	0.54	2	5	10	11
	Type 440.504.0	F _{u min}	[kN]	0.5	1.25	3.75	7.5	10
Circumferential	(Medium torque range)	F _{u max}	[kN]	1.4	2.5	7.5	15	30
force	Type 440.604.0	F _{u min}	[kN]	1.2	2.5	7.5	15	30
	(High torque range)	F _{u max}	[kN]	2.5	5	15	30	60
	Type 441.604.0	F _{u min}	[kN]	-	-	19	38	75
	Reinforced design	F _{u max}	[kN]	-	-	38	75	150
	Type 440.404.0	F _{ax min}	[kN]	0.2	0.9	1.62	4.5	3.6
(Low torque range)	(Low torque range)	F _{ax max}	[kN]	0.48	1.8	4.5	9	9.9
	Type 440.504.0	F _{ax min}	[kN]	0.45	1.12	3.37	6.75	9
Axial force	(Medium torque range)	F _{ax max}	[kN]	1.26	2.25	6.75	13.5	27
Axial force	Type 440.604.0	F _{ax min}	[kN]	1.08	2.25	6.75	13.5	27
Ту	(High torque range)	F _{ax max}	[kN]	2.25	4.5	13.5	27	54
	Type 441.604.0	F _{ax min}	[kN]	-	-	10	20	40
	Reinforced design	F _{ax max}	[kN]	-	-	20	40	80
Bolt stroke on ov	rerload		[mm]	2.5	4	6	8	12
Weights			[kg]	0.25	0.6	1.75	4.1	11.3

Dimensions		Sizes			
[mm]	02	01	0	1	2
A H8 h7	28	38	55	75	100
A _o	-	-	85	110	150
A ₁	28	35	55	75	100
A ₂	-	-	55	75	108
a ₁	1.0	1.5	2	2	3
b	-	-	12	15	20
d _o	10	14	20	30	40.6
d, ^{H8} 1 h7	-	-	30	40	60
е	31.2	41.6	-	-	-
L	28	40	73	96	160
L,	15	21	52	65	80
L ₂	-	-	42	51	70
I	12	15	30	40	50

EAS [®] -element	Standard


Example: Order number 0 / 440.504.0

- 1) Tightening torque $M_A = 40 \text{ Nm}$ 2) Tightening torque $M_A = 60 \text{ Nm}$
- 3) Fixing screw DIN EN ISO 4762 10.9 $M_{a} = 9 \text{ Nm}$

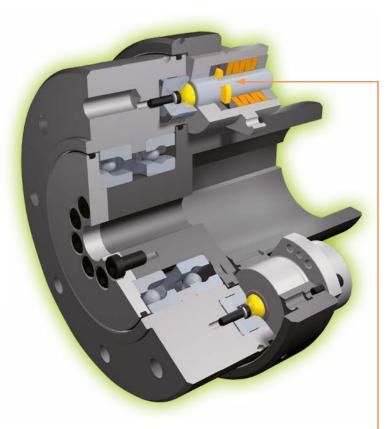
Dimensions			Sizes		
[mm]	02	01	0	1	2
I,	7	10	22	30	40
I ₂	-	-	12	17	22
м	-	-	72	95	128
m	-	-	44	60	80
n	17	22	31	48	69
S	-	-	M12	M20	M24
S	M24x1 ¹⁾	M30x1,5 ²⁾	M6 ³⁾	M8 ⁴⁾	M12 5)
s ₁	-	-	M5	M6	M8
SW	27	36	19	30	36
t	3	4	5	6	8
v	2	3	3	4	15
У 1 ⁶⁾	12	15	8	10	10
y ₂ ⁶⁾	16	21	38	50	65

We reserve the right to make dimensional and constructional alterations.

EAS®-element Reinforced

Example: Order number 0 / 441.604.0

- 4) Fixing screw DIN EN ISO 4762 10.9 $\rm M_{A}$ = 19 Nm 5) Fixing screw DIN EN ISO 4762 10.9 $\rm MM_{A}$ = 76 Nm
- 6) y_1 and y_2 are extension dimensions



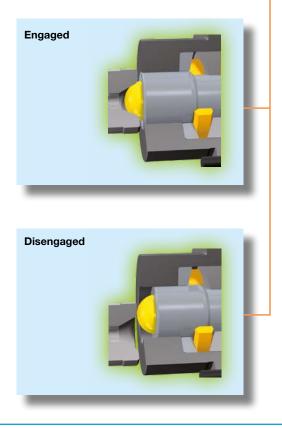
Characteristics

- Positive locking torque transmission acc. to the ball-detent principle
- □ Adjustable torque
- □ Separates disengagingly
- Easy repeat operation start-up
- Robust
- Long service lifetime

Rustproof design available on request

Design

All clutch parts are made of steel. EAS®-HT safety clutch basic components have a zinc-phosphated surface which provides a basic corrosion protection for further surface treatments.


Clutch types 4050, 4060 are also suitable for oil-running.

The limit torque for overload on the clutch can be adjusted by changing the cup spring pre-tension of each overload element.

The EAS[®]-HT safety clutches can be set to the required limit torque for overload at the place of manufacture. Subsequent torque changes can be carried out using the Adjustment Diagram included in the delivery (see respective Installation and Operational Instructions).

Operating principle of the EAS[®]-HT safety clutch Overload elements

- □ If the proportional circumferential force on the individual elements proves too large, the resulting axial force causes an axial movement of the bolt via the ball/calotte system and therefore the disconnection of the torque transmission.
- □ The maximum circumferential force is individually determined through the adjusting nut and *mayr*[®]-cup springs. The transmittable torque is determined in this way.
- □ Due to the axial stroke of the bolt (ball carrier), the control segments move radially outwards, thereby disconnecting the components axially.
- □ Re-engagement of the balls through a bolt stroke in the direction of the calotte takes place either manually or via a mayr[®] re-engagement device (pneumatic, hydraulic, electromechanical or mechanical).

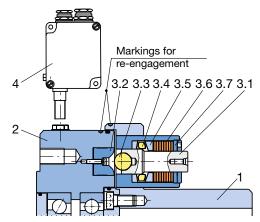
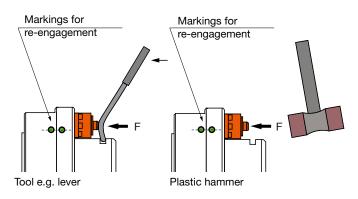



Fig. 2: EAS®-element clutch disengaged

Processes for torque switch-off on overload:

On overload, the hub part 1 and the output flange 2 begin to turn against each other. The bolts 3.1 in the overload elements are pressed via the control segments 3.4 against the force of the cup springs 3.6 from the thrust washers 3.2. The control segments 3.4 travel radially outwards over the bolt 3.1 switching edge and hold the bolts 3.1 in a disengaged position (see Fig. 2). The positive locking connection of the hub part 1 and the output flange 2 is nullified. The originally coupled masses can slow down freely. The drive is switched off electrically via speed monitoring device 4.

Re-engagement:

Turn the hub part 1 and the output flange 2 into the correct angular position to one another (re-engagement position can be recognized via the marking bores on the clutch outer diameter, Fig. 3). By applying axial pressure on the bolt end, bolts 3.1 are brought back to their engaged position. The clutch is ready for operation when all clutch overload elements are engaged.

Fig. 3

Maintenance

The EAS®-HT safety clutches do not require special maintenance work. They are largely protected against dust and humidity, they have an initial grease filling and are therefore mainly maintenance-free.

EAS[®]-elements Please find a detailed description in the respective Installation and Operational Instructions (go to www.mayr.com). Special maintenance work may be necessary, however, if the device is subject to large amounts of dirt or dust or is operating in extreme ambient conditions.

In this case, please contact the manufacturer.

Mounting onto the shaft:

In a standard delivery, the EAS[®]-HT safety clutches are delivered with a finish bore and a keyway acc. DIN 6885/1 P9. The clutch can be secured axially onto the shaft e.g. using a washer and a screw, screwed into the shaft threaded centre hole.

Optionally, we deliver a frictionally-locking shaft-hub connection (see EAS[®]-HT options, page 19).

Pre-selection of the clutch

Drive lines in heavy engineering are robust and designed for operation in adverse conditions. In contrast to systems with servomotor-driven drives, the torque course and the system behaviour often cannot be determined precisely.

Frequently, only the drive power of the motor and the permitted max. torque of the gear output are known.

Using tried-and-tested operating factors, clutch sizes suitable for the application can be pre-selected.

Pre-selection

T _N	= -	9550 × P n	[Nm]
T _G	*	$\mathbf{T}_{\mathbf{N}} imes \mathbf{K}_{\mathbf{B}}$	[Nm]

Names	Names:					
T _N	[Nm]	[Nm] Nominal torque of the motor				
T _G	[Nm]	Pre-selected release torque on the overload clutch				
Ρ	[KW]	Input power motor				
n	[rpm]	Speed				
K _B	[-]	Service factor				

Service	Service factors:				
2.5 - 3	medium impacts	Stirring units / pumps (viscid fluids) / kneading machines / mixing systems / conveyor belts / etc.			
3 - 5	high impacts	Shredding machines / centrifuges / crushers / roll trains / construction machines / mining machines / etc.			

In normal operation, the EAS[®]-HT transmits the set overload torque via positive locking. All torques for normal operation, including torque peaks, must be transmitted safely and must not cause the safety clutch to respond.

Often, the actual complex of loads (impacts) during operation (e.g. for shredding machines / mixers) are not known and can only be measured in the system with great effort.

Using software specially developed for the purpose, it is possible to simulate the behaviour in case of collisions of such drive lines. The prerequisite is that all specifications are known:

- Mass moments of inertia
- **D** Rigidities of all overload elements, including the overload clutch
- Parameters of the motor and the control circuit

Particularly in case of load-side vibration generation (e.g. piston compressors / shredding machines / etc.) or alternating torques **please contact us** to select a reliable, tried and tested overload protection for your production systems.


Here, the overload clutch is combined with suitable clutches, depending on the application:

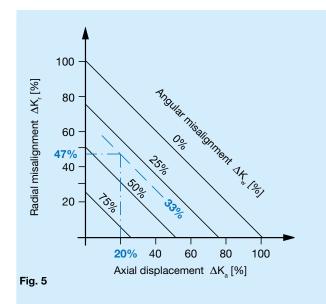
- Elastomer coupling
- Shaft Couplings
- Curved-tooth coupling

Profit from our many years of market and application experience in different branches.

Misalignment compensation capability of the different shaft misalignment compensation couplings

Shaft Misalignment

Misalignments between shafts occur due to manufacturing and assembly tolerances, bearing backlash and temperature influences.


This can cause axial, radial and angular shaft misalignment.

The shaft misalignment compensation coupling of the EAS-HT safety clutch can compensate for misalignments.

The misalignment possibilities of the shaft misalignment compensation coupling are general guideline values (see table "Technical Data").

In the application, the aim is to produce as precise a shaft alignment as possible, so that the bearing loads are reduced to a minimum.

Fig. 4

If more than one kind of misalignment takes place simultaneously, they influence each other. The permitted misalignment values are dependent on one another. The sum total of the actual misalignments – in percent of the maximum value – must not exceed 100 %.

Example:

EAS[®]-HT lastic, Size 8 Type 4053.00400.0

- □ Axial displacement occurrence: $\Delta K_a = 0.5 \text{ mm}$; equals 20 % of the permitted maximum value $\Delta K_a = 2.5 \text{ mm}$
- Angular misalignment occurrence: ΔK_w = 0.1 mm, equals 33 % of the permitted maximum value ΔK_w = 0.3 mm
- Radial displacement occurrence: ΔK_w = 0.14 mm, equals 47 % of the permitted maximum value ΔK_w = 0.3 mm

27

Product Summary

EAS[®]-Compact[®]/EAS[®]-NC

Safety Clutches/Overload Clutches

Positive locking and completely backlash-free torque limiting clutches
EAS®-smartic®
Cost-effective torque limiting clutches, quick installation
EAS®-element clutch/EAS®-elements
Load-disconnecting protection against high torques
EAS®-axial
Exact limitation of tensile and compressive forces
EAS®-Sp/EAS®-Sm/EAS®-Zr
Load-disconnecting torque limiting clutches with switching function
ROBA®-slip hubs
Load-holding, frictionally locked torque limiting clutches
ROBA®-contitorque
Magnetic continuous slip clutches
EAS®-HSC/EAS®-HSE
High-speed safety clutches for high-speed applications

Shaft Couplings

- smartflex[®]/primeflex[®] Perfect precision couplings for servo and stepping motors
 ROBA[®]-ES
- Backlash-free and damping for vibration-sensitive drives **ROBA®-DS/ROBA®-D**
- Backlash-free, torsionally rigid all-steel couplings **ROBA®-DSM**
 - Cost-effective torque-measuring couplings

Electromagnetic Brakes/Clutches

- ROBA-stop[®] standard Multifunctional all-round safety brakes
 ROBA stop[®] M master brakes
- ROBA-stop[®]-M motor brakes Robust, cost-effective motor brakes
- ROBA-stop[®]-S Water-proof, robust monoblock brakes
- ROBA-stop[®]-Z/ROBA-stop[®]-silenzio[®] Doubly safe elevator brakes
- ROBA[®]-diskstop[®] Compact, very quiet disk brakes
- ROBA[®]-topstop[®]
 Brake systems for gravity loaded axes
- ROBA[®]-linearstop Backlash-free brake systems for linear motor axes
- ROBA[®]-guidestop Backlash-free holding brake for profiled rail guides
- ROBATIC[®]/ROBA[®]-quick/ROBA[®]-takt Electromagnetic clutches and brakes, clutch brake units

DC Drives

tendo[®]-PM Permanent magnet-excited DC motors

Headquarters

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 44 21 www.mayr.com, E-Mail: info@mayr.com

Service Germany

Baden-Württemberg Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/45 96 01 0 Fax: 07 11/45 96 01 10

Hagen Im Langenstück 6 58093 Hagen Tel.: 0 23 31/78 03 0 Fax: 0 23 31/78 03 25

Branch office

China

Mayr Zhangjiagang Power Transmission Co., Ltd. Fuxin Road No.7, Yangshe Town 215637 Zhangjiagang Tel.: 05 12/58 91-75 67 Fax: 05 12/58 91-75 66 info@mayr-ptc.cn

Singapore

Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964 Tel.: 00 65/65 60 12 30 Fax: 00 65/65 60 10 00 info@mayr.com.sg

Representatives

Drive Systems Pty Ltd 12 Sommersby Court | Lysterfield | Victoria 3156 | Australia Phone: +61(0) 3 9759 7100 Email: info@drivesystems.com.au Web: www.drivesystems.com.au

South Korea

Mayr Korea Co. Ltd.

77-1, SungSan-Dong,

Tel.: 0 55/2 62-40 24

Fax: 0 55/2 62-40 25

info@mayrkorea.com

Room No.1002, 10th floor,

Nex Zone, SK TECHNOPARK,

SungSan-Gu, Changwon, Korea

Poland

Wamex Sp. z o.o. ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 15 90 80 Fax: 0 22/8 15 61 80 wamex@wamex.com.pl

Bavaria Eichenstraße 1 87665 Mauerstetten Tel.: 0 83 41/80 41 04 Fax: 0 83 41/80 44 23

Kamen Lünener Straße 211 59174 Kamen Tel.: 0 23 07/23 63 85 Fax: 0 23 07/24 26 74

Great Britain Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00 Fax: 0 15 35/66 32 61 sales@mayr.co.uk

Switzerland Mayr Kupplungen AG Tobeläckerstraße 11 8212 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70 Fax: 0 52/6 74 08 75 info@mayr.ch

Chemnitz Bornaer Straße 205 09114 Chemnitz Tel.: 03 71/4 74 18 96 Fax: 03 71/4 74 18 95

North Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78

France Mayr France S.A.S.

Z.A.L. du Minopole Rue Nungesser et Coli 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

USA

Japan

Mayr Corporation 10 Industrial Avenue Mahwah NJ 07430 Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com

MATSUI Corporation

Tel.: 03/35 86-41 41

Fax: 03/32 24 24 10

k.goto@matsui-corp.co.jp

German Tech Auto Co., Ltd.

No. 28, Fenggong Zhong Road,

2-4-7 Azabudai

Tokyo 106-8641

Shengang Dist.,

Tel.: 04/25 15 05 66

Fax: 04/25 15 24 13

abby@zfgta.com.tw

Minato-ku

Taiwan

Franken

Unterer Markt 9 91217 Hersbruck Tel.: 0 91 51/81 48 64 Fax: 0 91 51/81 62 45

Rhine-Main

Hans-Böckler-Straße 6 64823 Groß-Umstadt Tel.: 0 60 78/7 82 53 37 Fax: 0 60 78/9 30 08 00

Italy

Mayr Italia S.r.l. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0498/79 10 20 Fax: 0498/79 10 22 info@mayr-italia.it

Netherlands

Groneman BV Amarilstraat 11 7554 TV Hengelo OV Tel.: 074/2 55 11 40 Fax: 074/2 55 11 09 aandrijftechniek@groneman.nl

Czech Republic

BMC BALTAS s. r. o. Hviezdoslavova 29 b 62700 Brno Taichung City 429, Taiwan R.O.C. Tel.: 05/45 22 60 47 Fax: 05/45 22 60 48 info@bmcbaltas.cz

More representatives:

Austria, Belgium, Brazil, Canada, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Luxembourg, Malaysia, New Zealand, Norway, Philippines, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand, Turkey

You can find the complete address for the representative responsible for your area under www.mayr.com in the internet.