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Abstract

Background and objectives

Microneedling therapy is a widely used technique in dermatology. However, little is known

about the underlying molecular effects of this therapy on extracellular matrix remodeling,

wound healing, and inflammation. The aim of this study was to examine morphological and

molecular changes caused by microneedling treatment in a standardized in vitro full-thick-

ness 3D model of human skin.

Materials and methods

A microneedling device was used to treat full-thickness 3D skin models. Specimens were

harvested at specified time points and qRT-PCR and microarray studies were performed.

Frozen sections were examined histologically.

Results

Microneedling treatment caused morphological changes in the skin model resulting in an

almost complete recovery of the epidermis five days after treatment. Microarray analysis

identified an upregulation of genes that are associated with tissue remodeling and wound

healing (e.g. COL3A1, COL8A1, TIMP3), epithelial proliferation and differentiation (KRT13,

IGF1), immune cell recruitment (CCL11), and a member of the heat shock protein family

(HSPB6). On the other hand, we detected a downregulation of pro-inflammatory cytokines

(e.g. IL1α, IL1β, IL24, IL36γ, IL36RN), and antimicrobial peptides (e.g. S100A7A, DEFB4).

These data were confirmed by independent RT-PCR analyses.

Conclusion

We present for the first time the direct molecular effects of microneedling therapy on epider-

mal keratinocytes and dermal fibroblasts using a standardized 3D skin model. Treatment

resulted in histological alterations and changed the expression of various genes related to

epidermal differentiation, inflammation, and dermal remodeling. This data suggests that
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skin microneedling plays a role in dermal remodeling, increases epidermal differentiation,

and might also have a direct effect on collagen synthesis. These findings may increase our

understanding of the molecular mechanisms of human skin repair induced by microneedling

therapy and will allow comparisons with competing applications, such as ablative laser

therapies.

Introduction

Skin microneedling therapies are growing in popularity for the treatment of a wide variety of

dermatological conditions [1]. This technique has most commonly been used to treat atrophic

acne scars [2], striae distensae [3], melasma [4], and to promote skin rejuvenation [5]. Skin

microneedling is also used in combination with skin cell transplantation to treat burn victims

and for transdermal drug delivery [6–8]. Due to its low cost and easy handling compared to

ablative and non-ablative laser therapies, this method is becoming increasingly popular and

research in this field recently intensified [9, 10]. Skin treatment procedures vary broadly from

chemical techniques, to laser treatments, to surgical interventions [11]. However, most of

these treatments are invasive and can cause secondary problems like hyper- or hypopigmenta-

tion, especially in patients with darker skin types [12]. Clinical results for potential skin rejuve-

nation showed promising results with microneedling (1–1.5 mm needle length) similar to

those with medical needling (3 mm needle length) [10]. A major advantage of microneedling

is that it is less invasive and can be applied under local anesthesia. In microneedling therapy,

the epidermis remains relatively intact, which helps to limit post procedural adverse events,

such as bleeding, swelling, and pain [13].

Human organotypic 3D skin models have established themselves as a standard method for

studying human skin and have revealed interesting and reproducible results after laser induced

microwounding [14–17]. We previously developed a standardized human 3D skin model for

studying morphological and molecular modifications during wound healing after laser treat-

ment [18]. Until now, little is known about the underlying molecular and histomorphological

effects of microneedling treatment on human skin, because changes in the expression of vari-

ous growth factors (TGFβ1–3, FGF, EGF, VEGF, TNF-α) that promote collagen synthesis have

only been described in animal skin biopsies [7]. Therefore, the aim of the present study was to

investigate the time-dependent histological and molecular alterations following microneedling

treatment in an established human 3D skin model.

Materials and methods

Isolation and culture of normal human epidermal keratinocytes (NHEK)

and normal human dermal fibroblasts (NHDF)

NHDF and NHEK were isolated from biopsies of four different donors after cutaneous sur-

gery. The epidermis was separated from the dermis by digestion with dispase (BD Biosciences,

Franklin Lakes, NY) and trypsin (Lonza, Basel, Switzerland). Trypsin Neutralization Solution

(Lonza) was used for pH-neutralization. The dermal portion of the biopsy was incubated in

collagenase 1A (Sigma, Taufkirchen, Germany) to yield a single cell suspension of NHDF.

This study was conducted according to the Declaration of Helsinki and was approved by the

ethics committee of the University Hospital, RWTH Aachen, Germany. Written informed
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consent was obtained from the skin donor. Cultivation of NHEK and NHDF was performed

as described previously [18].

Scaffold skin equivalents

Matriderm (Medskin Solutions, Suwelack A.G., Billerbeck, Germany) is a 3D bovine collagen–

elastin matrix consisting of bovine collagen types I, III, and V. In this study, matrices of 148 x

105 x 1 mm were used. The collagen–elastin matrix was sliced into circular 22 mm punches

and transferred into six-well cell culture inserts (BD Falcon, Bedford, MA, USA), then stored

under sterile conditions in six-well plates until use. Matriderm scaffolds were inoculated with

3 x 105 NHDF per cm2 in Tisseel (Baxter, Derfield, IL, USA) and submersed with fibroblast

growth medium used for dermal scaffold skin equivalents. After three days, 3 x 106 NHEK

were seeded on top of each dermal equivalent. Skin equivalents were submersed in equal vol-

umes of DMEM and keratinocyte growth medium with 5% fetal calf serum (FCS), 50 μg ascor-

bic acid, and 5 μg/ml aprotinin (Applichem, Chicago, IL, USA). On the following day, skin

equivalents were lifted to the air–liquid interface. The calcium concentration of the culture

medium was increased to 1.0 mM and medium was changed every other day [18].

Skin needling

3D skin models were treated with an eDermastamp (Dermaroller GmbH, Wolfenbüttel, Ger-

many) using a six needle plate (1.5 NM615LS16309, Amiea Med). One hundred insertions

were made per second at a penetration depth of 1.0 mm and with three passes, according to

the manufacturer´s and clinical treatment recommendations. After treatment, the models

were cultivated in fresh culture medium and harvested on day 5 for histological analysis and

detection of gene expression. Untreated models were maintained as negative controls. All

experiments were performed in triplicate for every time point.

RNA isolation

Total RNA was isolated using the Nucleo Spin RNA Kit (Macherey and Nagel, Düren, Ger-

many) according to the manufacturer’s instructions. RNA isolation included on-column

digestion of DNA with RNase-free DNase I. The RNA was quantified by photometric mea-

surement (NanoDrop Technologies, Wilmington, DE, USA) and its integrity was analyzed on

a 2100 bioanalyzer (Agilent Technologies, Palo Alto, CA, USA).

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)

Purified RNA was reversed transcribed with SS VILO Mastermix (Life Technologies) accord-

ing the manufacturer’s instructions. TaqMan experiments were carried out on an ABI Prism

7,300 sequence detection system (Applied Biosystems, Weiterstadt, Germany) using Assays-

on-Demand gene expression products for CCL11 (Hs00237013_m1), IGF1 (Hs01547656_m1),

TIMP3 (Hs00165949_m1), KRT13 (Hs00357961_g1), COL3A1 (Hs00943809_m1), HSPB6
(Hs00328933_m1), COL8A1 (Hs00156669_m1), IL1α (Hs00174092_m1), IL1β (Hs0017

4097_m1), IL24 (Hs01114274_m1), IL36γ (Hs00219742_m1), IL36RN (Hs_00202179_m1),

S100A7A (00752780_s1), and DEFB4 (Hs00823638_m1), according to the manufacturer’s

recommendations. An Assay-on-Demand product for HPRT (Hs99999909) was used as an

internal reference to normalize the target transcripts. All measurements were performed in

triplicate in separate reaction wells.

Microneedling in a human three-dimensional skin model
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Gene expression analysis using exon expression arrays

Purified mRNA was analyzed on GeneChip Human Gene 2.0 ST arrays as reported previously

[18] using Gene-SpringGX software, version 14.9 (Agilent Technologies, Frankfurt am Main,

Germany). Gene ontology (GO) analysis was performed using http://www.gene-ontology.org/.

Light microscopy

For light microscopy, 4 μm cryosections of skin equivalents were embedded in Tissue Tec

OCT and stained with hematoxylin and eosin. Sections were examined by a photomicroscope

(DMIL, Leitz, Wetzlar, Germany).

Statistical analysis

Data are given as arithmetical means ± standard deviation and were analyzed with the Mann-

Whitney U test using GraphPad PRISM, version 7 (La Jolla, CA, USA). P values <0.05 were

considered statistically significant.

Results

To investigate the effects of microneedling therapy on skin morphology, we established full-

thickness human 3D skin equivalents containing dermal and epidermal structures, including a

functional stratum corneum, a basal layer, and a basal membrane. Fig 1 depicts representative

images of 3D skin models directly after microneedling and five days later compared with

untreated controls. Histological examination revealed clearly defined lesions of the epidermis

and dermis immediately after microneedling treatment, whereas dermal and epidermal struc-

tures were almost totally restored after five days.

To our knowledge, the molecular effects of microneedling on human skin are poorly

defined. In the present study, we conducted a transcriptomic microarray profiling of 3D skin

models (n = 3) five days after microneedling (Fig 2A). Gene array analysis revealed a >1.5-fold

upregulation of genes associated with tissue remodeling and wound healing (TIMP3, COL3A1,

COL8A1), epithelial proliferation and differentiation (KRT13, IGF1), immune cell recruitment

(CCL11) and an upregulation of heat shock protein (HSP) B6 in microneedling-treated skin

models compared with untreated controls. On the other hand, we detected a downregulation

of different cytokines (IL1A, IL1B, IL36G, IL36RN, IL24) as well as antimicrobial peptides

(S100A7A,DEFB4) in microneedling-treated skin models compared with untreated controls.

Additionally, GO analysis confirmed an impact of microneedling treatment on biological pro-

cesses such as “cornification”, “keratinocyte differentiation”, “epidermis development”,

“inflammatory response”, and “extracellular matrix organization” (Fig 2B). To verify these

findings, we used RT-PCR analysis to measure the expression of selected genes in four inde-

pendent approaches (Fig 3). In general, RT-PCR analysis confirmed up- and downregulation

of all genes. The downregulation of IL36G, S100A7A, and DEFB4 in microneedling-treated

models was particularly significant.

Discussion

Skin microneedling has been used to successfully treat acne scars [2] and striae distensae [3],

and to promote skin rejuvenation [8]. It has also been used in combination with skin cell trans-

plantation, in transdermal drug delivery, and during pretreatment with photodynamic therapy

(PDT) [6, 7, 19]. In a case of melasma, upper dermal neocollagenesis, restoration of basal

membrane, and epithelial acanthosis were observed after two sessions of gentle microneedling,

reinforcing the hypothesis that microneedling can induce repair [20]. This evolving technique
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is considered minimally invasive with low costs and a high safety profile [9]. Nevertheless, little

is known about the underlying molecular effects of microneedling therapy on the skin.

So far, microneedling has been clinically evaluated in animal skin [7] or in individual

human skin biopsies [21] only revealing changes in growth factor expression associated with

the de novo synthesis of collagen (e.g. TGFβ1–3, FGF, EGF, VEGF, TNF-α) [7]. To our knowl-

edge, the present study is the first report of the effects of microneedling therapy in a standard-

ized in vitro human 3D skin model. In previous studies, we could reveal that human skin

equivalents are a suitable standardized in vitro tool for detecting the ex vivo effects of various

laser systems on skin physiology, skin morphology, and gene regulation [14, 18, 22]. Full-

thickness skin models seemed to be suitable for studying the effects of microneedling therapy,

particularly on deeper dermal layers. Therefore we applied this model system to systematically

analyze time-dependent histological and molecular alterations in the skin following micro-

needling therapy.

Using microarray and RT-PCR analyses, our findings revealed a downregulation of pro-

inflammatory cytokines such as IL1α, IL1β, IL24, IL36RN, and IL36γ as well as antimicrobial

peptides (AMPs) such as S100A7A and DEFB4 in microneedling-treated skin models. The

Fig 1. Representative hematoxylin and eosin stained sections of 3D skin models zero and five days after

microneedling treatment. Untreated models are shown as controls. Magnification = 100 x, scale bar = 100 μm.

https://doi.org/10.1371/journal.pone.0204318.g001
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wound healing process consists of an acute inflammatory phase, reepithelization, and remod-

eling of the dermal extracellular matrix [23]. Initiating and perpetuating the inflammatory

response involves many molecules, including cytokines and AMPs [24]. Acute inflammation

usually lasts for 2–5 days and ceases once the harmful stimuli have been removed [24], which

is consistent with our finding that pro-inflammatory cytokines and AMPs are downregulated

in 3D skin models five days after microneedling. This downregulation may act as a wound-

related signal to stimulate reepithelization.

On the other hand, we detected an upregulation of the known chemokine eotaxin (CCL11).

CCL11 regulates cell activation and contributes to angiogenesis [25]. Overall, changes in inter-

leukin and chemokine expression may modify the formation and structural integrity of the

epidermis after needling therapy and thereby contribute to neocollagenesis and wound

healing.

Fig 2. Gene expression profiling in microneedling-treated 3D skin models (microarray analysis). (A) 3D skin models were

harvested five days after microneedling treatment. Gene expression was measured using the Affymetrix Gene Chip Human Exon 2.0

ST array. (B) Gene ontology (GO) analysis of microarray results.

https://doi.org/10.1371/journal.pone.0204318.g002
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Matrix metalloproteinases (MMPs) are involved in the remodeling of abnormal scars and

also influence other wound healing responses, such as inflammation and reepithelization [26–

28]. Tissue inhibitors of metalloproteinase (TIMPs) are downregulated in hypertrophic scars

[29]. Interestingly, we detected an upregulation of TIMP3 after microneedling therapy.

A study by Dohi et al. showed that downregulation of TIMP2 contributes to the progression

and development of keloids suggesting that higher levels of TIMPs may be beneficial to the

reduction of the thick dermis and collagen bundles seen in keloids [30]. In this context, micro-

needling induced expression of TIMP3 could suggest a positive effect of this therapy in the

treatment of hypertrophic scars.

Furthermore, we detected an upregulation of insulin-like growth factor 1 (IGF-1) in our

skin model five days after microneedling. Lewis et al. [31] showed that IGF-1 expression in

human dermal fibroblasts is triggered by stress, such as UVB-induced DNA damage, which

alters the protective stress response of epidermal keratinocytes. In our study, IGF-1 expression

was upregulated after microneedling treatment. This may represent a response to stress-

induced cell damage that induces DNA-repair mechanisms. The highly ordered process of

wound healing comprises the coordinated regulation of cell proliferation and migration as

well as tissue remodeling. These processes are predominantly regulated by polypeptide growth

factors, such as members of the insulin growth factor family [32]. The importance of IGF-1 in

wound healing has already been shown in several studies [33, 34]. Our findings are in line with

those of studies that show increased IGF-1 expression during wound repair processes and sup-

port the hypothesis that IGF-1 signaling is required for efficient re-epithelialization and

wound healing [24, 34].

It has already been clinically demonstrated that microneedling can induce collagen synthe-

sis following aesthetic surgery and may represent an alternative to laser surgery [35]. Matrix

remodeling following the inflammatory phase of wound healing is characterized by collagen

synthesis [36]. In this context, we detected an upregulation in the expression of genes that are

related to collagen synthesis (COL3A1, COL8A1) five days after microneedling.

Moreover, expression of HSPs, such as HSPB6, was higher after microneedling therapy in

treated skin models than in untreated controls. HSPs were first described as proteins that

Fig 3. TaqMan real-time PCR analysis of four independent approaches displaying the expression of selected genes

five days after microneedling treatment.Ctrl = control. �p< 0.05, ��p< 0.01.

https://doi.org/10.1371/journal.pone.0204318.g003
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protect cells following heat stress-related damage [37, 38]. Since then, it has been hypothesized

that HSPs also modulate wound contraction in fibroblast cell lines after wound infliction [39].

Previous studies have shown increased HSP expression after ablative fractional resurfacing

treatment, suggesting that the heat shock response was most likely due to the thermal effects of

the laser treatment [37, 40]. Beside their protective functions, accumulating evidence indicates

that HSPs are also involved in tissue remodeling and wound healing [40–42]. Our findings

support the theory that HSPs play an important role in dermal remodeling after microneedling

treatment.

Interestingly, we found an increased expression of the known epithelial cell differentiation

markers keratin 13 (KRT13) after microneedling treatment. Wound healing is not fully com-

pleted five days after microneedling; therefore the upregulation of this marker in our model

may reflect the ongoing differentiation of epithelial cells.

It is worth mentioning that microneedling treatment in 3D models causes similar changes

in the expression of differentiation markers as ablative laser therapy using a Er:YAG laser [22,

43]. This may be explained by the fact that both treatments completely remove the epidermis,

which then needs to be fully re-developed. In agreement with the observed changes in gene

expression, we found an impact of microneedling therapy on biological processes like “cornifi-

cation”, “keratinocyte differentiation”, “epidermis development”, “inflammatory response”,

and “extracellular matrix organization”. These data support the impact of microneedling on

wound healing, re-epithelialization, and skin rejuvenation.

The human 3D model system used in the present study is a useful tool for studying physiol-

ogy, morphology, and time-dependent gene expression after microneedling treatment. The

corium is fully developed and allows the effects of microneedling on the collagen structure in

deeper skin layers to be examined. Molecular mechanisms underlying the proliferative effect

of e.g. pantothenate or laser treatments were previously investigated by global gene expression

analysis (microarray analysis) in cultured human dermal fibroblasts (in vitro) and in a clinical

trial (in vivo) [18, 22, 44]. A limitation of this simplified human in vitro 3D skin model, which

contains only two cell types (keratinocytes and fibroblasts), is that it is not able to mimic the

complex requirements of in vivo conditions. However, the advantage is that the observed

changes in gene expression can be specifically attributed to changes in keratinocytes and fibro-

blasts. In summary, our findings have revealed that microneedling therapy in a 3D human

skin model induces histological alterations and changes the expression of various genes related

to epidermal differentiation, inflammation, and dermal remodeling. Based on our results, we

assume that microneedling therapy stimulates collagen synthesis, which may be beneficial for

skin rejuvenation or the treatment of atrophic scars. Further in vitro studies with novel 3D

skin models which additionally also contain macrophages appear to be useful in order to take

into account the indirect effects of the microneedling therapy on inflammatory cells.
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entiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol. 2012; 129

(2):426–33, 33.e1-8. https://doi.org/10.1016/j.jaci.2011.10.042 PMID: 22177328.

16. Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-

throughput drug candidate toxicity assessments. Adv Drug Deliv Rev. 2014;69–70:1–18. https://doi.

org/10.1016/j.addr.2014.10.006 PubMed PMID: 25451857.

17. Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Adv Drug Deliv

Rev. 2014;69–70:81–102. https://doi.org/10.1016/j.addr.2014.10.006 PubMed PMID: 25451857.

18. Marquardt Y, Amann PM, Heise R, Czaja K, Steiner T, Merk HF, et al. Characterization of a novel stan-

dardized human three-dimensional skin wound healing model using non-sequential fractional ultra-

pulsed CO2 laser treatments. Lasers Surg Med. 2015; 47(3):257–65. Epub 2015/03/15. https://doi.org/

10.1002/lsm.22341 PMID: 25771913.

19. Bay C, Lerche CM, Ferrick B, Philipsen PA, Togsverd-Bo K, Haedersdal M. Comparison of Physical

Pretreatment Regimens to Enhance Protoporphyrin IX Uptake in Photodynamic Therapy: A Random-

ized Clinical Trial. JAMA Dermatol. 2017; 153(4):270–8. https://doi.org/10.1001/jamadermatol.2016.

5268 PMID: 28146245.

20. Lima EVA, Lima M, Paixao MP, Miot HA. Assessment of the effects of skin microneedling as adjuvant

therapy for facial melasma: a pilot study. BMC dermatology. 2017; 17(1):14. https://doi.org/10.1186/

s12895-017-0066-5 PMID: 29183309; PubMed Central PMCID: PMC5706369.

21. Helbig D, Mobius A, Simon JC, Paasch U. Heat shock protein 70 expression patterns in dermal explants

in response to ablative fractional phothothermolysis, microneedle, or scalpel wounding. Wounds. 2011;

23(3):59–67. PMID: 25881332.

22. Schmitt L, Amann PM, Marquardt Y, Heise R, Czaja K, Gerber PA, et al. Molecular effects of fractional

ablative erbium:YAG laser treatment with multiple stacked pulses on standardized human three-dimen-

sional organotypic skin models. Lasers Med Sci. 2017; 32(4):805–14. https://doi.org/10.1007/s10103-

017-2175-0 PMID: 28299490.

23. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012; 49(1):35–43. https://doi.org/

10.1159/000339613 PMID: 22797712.

24. Landen NX, Li D, Stahle M. Transition from inflammation to proliferation: a critical step during wound

healing. Cell Mol Life Sci. 2016; 73(20):3861–85. https://doi.org/10.1007/s00018-016-2268-0 PMID:

27180275; PubMed Central PMCID: PMC5021733.

25. Salcedo R, Young HA, Ponce ML, Ward JM, Kleinman HK, Murphy WJ, et al. Eotaxin (CCL11) induces

in vivo angiogenic responses by human CCR3+ endothelial cells. J Immunol. 2001; 166(12):7571–8.

PMID: 11390513.

26. Shah JM, Omar E, Pai DR, Sood S. Cellular events and biomarkers of wound healing. Indian J Plast

Surg. 2012; 45(2):220–8. https://doi.org/10.4103/0970-0358.101282 PMID: 23162220; PubMed Cen-

tral PMCID: PMCPMC3495371.

27. Gill SE, Parks WC. Metalloproteinases and their inhibitors: regulators of wound healing. Int J Biochem

Cell Biol. 2008; 40(6–7):1334–47. Epub 2007/10/26. https://doi.org/10.1016/j.biocel.2007.10.024

PMID: 18083622; PubMed Central PMCID: PMCPMC2746915.

28. Fujiwara M, Muragaki Y, Ooshima A. Keloid-derived fibroblasts show increased secretion of factors

involved in collagen turnover and depend on matrix metalloproteinase for migration. Br J Dermatol.

2005; 153(2):295–300. https://doi.org/10.1111/j.1365-2133.2005.06698.x PMID: 16086739.

29. Tsou R, Cole JK, Nathens AB, Isik FF, Heimbach DM, Engrav LH, et al. Analysis of hypertrophic and

normal scar gene expression with cDNA microarrays. The Journal of burn care & rehabilitation. 2000;

21(6):541–50. PMID: 11194809.

30. Dohi T, Miyake K, Aoki M, Ogawa R, Akaishi S, Shimada T, et al. Tissue Inhibitor of Metalloproteinase-

2 Suppresses Collagen Synthesis in Cultured Keloid Fibroblasts. Plastic and reconstructive surgery

Global open. 2015; 3(9):e520. https://doi.org/10.1097/GOX.0000000000000503 PMID: 26495233;

PubMed Central PMCID: PMC4596445.

31. Lewis DA, Travers JB, Somani AK, Spandau DF. The IGF-1/IGF-1R signaling axis in the skin: a new

role for the dermis in aging-associated skin cancer. Oncogene. 2010; 29(10):1475–85. https://doi.org/

10.1038/onc.2009.440 PMID: 19966862; PubMed Central PMCID: PMC2837099.

32. Bitar MS, Al-Mulla F. ROS constitute a convergence nexus in the development of IGF1 resistance and

impaired wound healing in a rat model of type 2 diabetes. Disease models & mechanisms. 2012; 5

(3):375–88. https://doi.org/10.1242/dmm.007872 PMID: 22362362; PubMed Central PMCID:

PMC3339831.

33. Blakytny R, Jude EB, Martin Gibson J, Boulton AJ, Ferguson MW. Lack of insulin-like growth factor 1

(IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J Pathol. 2000; 190

Microneedling in a human three-dimensional skin model

PLOS ONE | https://doi.org/10.1371/journal.pone.0204318 September 20, 2018 10 / 11

https://doi.org/10.1016/j.jaci.2011.10.042
http://www.ncbi.nlm.nih.gov/pubmed/22177328
https://doi.org/10.1016/j.addr.2014.10.006
https://doi.org/10.1016/j.addr.2014.10.006
https://doi.org/10.1016/j.addr.2014.10.006
https://doi.org/10.1002/lsm.22341
https://doi.org/10.1002/lsm.22341
http://www.ncbi.nlm.nih.gov/pubmed/25771913
https://doi.org/10.1001/jamadermatol.2016.5268
https://doi.org/10.1001/jamadermatol.2016.5268
http://www.ncbi.nlm.nih.gov/pubmed/28146245
https://doi.org/10.1186/s12895-017-0066-5
https://doi.org/10.1186/s12895-017-0066-5
http://www.ncbi.nlm.nih.gov/pubmed/29183309
http://www.ncbi.nlm.nih.gov/pubmed/25881332
https://doi.org/10.1007/s10103-017-2175-0
https://doi.org/10.1007/s10103-017-2175-0
http://www.ncbi.nlm.nih.gov/pubmed/28299490
https://doi.org/10.1159/000339613
https://doi.org/10.1159/000339613
http://www.ncbi.nlm.nih.gov/pubmed/22797712
https://doi.org/10.1007/s00018-016-2268-0
http://www.ncbi.nlm.nih.gov/pubmed/27180275
http://www.ncbi.nlm.nih.gov/pubmed/11390513
https://doi.org/10.4103/0970-0358.101282
http://www.ncbi.nlm.nih.gov/pubmed/23162220
https://doi.org/10.1016/j.biocel.2007.10.024
http://www.ncbi.nlm.nih.gov/pubmed/18083622
https://doi.org/10.1111/j.1365-2133.2005.06698.x
http://www.ncbi.nlm.nih.gov/pubmed/16086739
http://www.ncbi.nlm.nih.gov/pubmed/11194809
https://doi.org/10.1097/GOX.0000000000000503
http://www.ncbi.nlm.nih.gov/pubmed/26495233
https://doi.org/10.1038/onc.2009.440
https://doi.org/10.1038/onc.2009.440
http://www.ncbi.nlm.nih.gov/pubmed/19966862
https://doi.org/10.1242/dmm.007872
http://www.ncbi.nlm.nih.gov/pubmed/22362362
https://doi.org/10.1371/journal.pone.0204318


(5):589–94. https://doi.org/10.1002/(SICI)1096-9896(200004)190:5<589::AID-PATH553>3.0.CO;2-T

PMID: 10727985.

34. Wang T, Wang Y, Menendez A, Fong C, Babey M, Tahimic CG, et al. Osteoblast-Specific Loss of

IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing. Journal

of bone and mineral research: the official journal of the American Society for Bone and Mineral

Research. 2015; 30(9):1572–84. https://doi.org/10.1002/jbmr.2510 PMID: 25801198; PubMed Central

PMCID: PMC5690481.

35. Fernandes D. Percutaneous collagen induction: an alternative to laser resurfacing. Aesthetic surgery

journal. 2002; 22(3):307–9. https://doi.org/10.1067/maj.2002.126195 PMID: 19331986.

36. Orringer JS, Sachs DL, Shao Y, Hammerberg C, Cui Y, Voorhees JJ, et al. Direct quantitative compari-

son of molecular responses in photodamaged human skin to fractionated and fully ablative carbon diox-

ide laser resurfacing. Dermatol Surg. 2012; 38(10):1668–77. Epub 2012/07/17. https://doi.org/10.1111/

j.1524-4725.2012.02518.x PMID: 22805255.

37. Helbig D, Mobius A, Simon JC, Paasch U. Heat shock protein 70 expression patterns in dermal explants

in response to ablative fractional phothothermolysis, microneedle, or scalpel wounding. Wounds. 2011;

23(3):59–67. PMID: 25881332.

38. Maytin EV. Heat shock proteins and molecular chaperones: implications for adaptive responses in the

skin. J Invest Dermatol. 1995; 104(4):448–55. PMID: 7706757.

39. Hirano S, Shelden EA, Gilmont RR. HSP27 regulates fibroblast adhesion, motility, and matrix contrac-

tion. Cell stress & chaperones. 2004; 9(1):29–37. https://doi.org/10.1379/471.1 PMID: 15270075;

PubMed Central PMCID: PMC1065303.

40. Laplante AF, Moulin V, Auger FA, Landry J, Li H, Morrow G, et al. Expression of heat shock proteins in

mouse skin during wound healing. J Histochem Cytochem. 1998; 46(11):1291–301. https://doi.org/10.

1177/002215549804601109 PMID: 9774628.

41. Souil E, Capon A, Mordon S, Dinh-Xuan AT, Polla BS, Bachelet M. Treatment with 815-nm diode laser

induces long-lasting expression of 72-kDa heat shock protein in normal rat skin. Br J Dermatol. 2001;

144(2):260–6. PMID: 11251556.

42. Zhou JD, Luo CQ, Xie HQ, Nie XM, Zhao YZ, Wang SH, et al. Increased expression of heat shock pro-

tein 70 and heat shock factor 1 in chronic dermal ulcer tissues treated with laser-aided therapy. Chin

Med J (Engl). 2008; 121(14):1269–73. PMID: 18713545.

43. Amann PM, Marquardt Y, Steiner T, Hölzle F, Skazik-Voogt C, Heise R, et al. Effects of non-ablative

fractional erbium glass laser treatment on gene regulation in human three-dimensional skin models.

Lasers Med Sci. 2016; 31(3):397–404. Epub 2016/01/21. https://doi.org/10.1007/s10103-015-1863-x

PMID: 26796701.

44. Heise R, Skazik C, Marquardt Y, Czaja K, Sebastian K, Kurschat P, et al. Dexpanthenol modulates

gene expression in skin wound healing in vivo. Skin Pharmacol Physiol. 2012; 25(5):241–8. https://doi.

org/10.1159/000341144 PMID: 22759998.

Microneedling in a human three-dimensional skin model

PLOS ONE | https://doi.org/10.1371/journal.pone.0204318 September 20, 2018 11 / 11

https://doi.org/10.1002/(SICI)1096-9896(200004)190:5<589::AID-PATH553>3.0.CO;2-T
http://www.ncbi.nlm.nih.gov/pubmed/10727985
https://doi.org/10.1002/jbmr.2510
http://www.ncbi.nlm.nih.gov/pubmed/25801198
https://doi.org/10.1067/maj.2002.126195
http://www.ncbi.nlm.nih.gov/pubmed/19331986
https://doi.org/10.1111/j.1524-4725.2012.02518.x
https://doi.org/10.1111/j.1524-4725.2012.02518.x
http://www.ncbi.nlm.nih.gov/pubmed/22805255
http://www.ncbi.nlm.nih.gov/pubmed/25881332
http://www.ncbi.nlm.nih.gov/pubmed/7706757
https://doi.org/10.1379/471.1
http://www.ncbi.nlm.nih.gov/pubmed/15270075
https://doi.org/10.1177/002215549804601109
https://doi.org/10.1177/002215549804601109
http://www.ncbi.nlm.nih.gov/pubmed/9774628
http://www.ncbi.nlm.nih.gov/pubmed/11251556
http://www.ncbi.nlm.nih.gov/pubmed/18713545
https://doi.org/10.1007/s10103-015-1863-x
http://www.ncbi.nlm.nih.gov/pubmed/26796701
https://doi.org/10.1159/000341144
https://doi.org/10.1159/000341144
http://www.ncbi.nlm.nih.gov/pubmed/22759998
https://doi.org/10.1371/journal.pone.0204318

