Alpha ST Series Fiber Laser Cutting Machine 3015ST/ 4015ST/ 6015ST

ALPHA ST series fiber laser cutting machine has been designed for small and medium sheet metal workshop. 600° C heat treatment has been done on the whole machine body, which give Alpha ST series laser cutting machine a minimum 20 years life without mechanical distortion. With most updated fiber laser technology, you can cut your job faster and cheaper.

Features:

- 1500x3000mm cutting area
- Designed for thin sheet metal
- Good energy efficiency, low power
- consumption and environmental friendly

Typical running cost of 3kW fiber laser

- With laser gas or clean dry compressed air
- Equipped with Raycus laser/IPG laser
- 1.5KW ,2KW, 3KW or 6KW fiber laser

Description	Cost based on 38hours per week
Machine devaluation	\$90 per week
Power consumption	\$180 per week
Consumables(nozzle, lens)	\$40 per week
Cutting gas cost	\$80 - \$750 per week depends on oxygen or nitrogen gas
Maintenance	\$50 per week
Labour cost	\$1,140 per week

Model	3015ST		
Working Area	1500 x 3000mm		
Weight	2500kg		
Z axis travel	90mm		
Laser power	1500W/2000W/3000W/6000W		
Rapid speed	80m/min		
Repetition	0.05mm		
Power supply	415V/50Hz 3 phase		
Power Consumption	Depends on laser power		
File formats	DXF,NC CODE		
Suitable material	Mild steel, stainless steel, Galvanised steel, aluminium		

Performance comparison of 3000W and 2000W fiber laser source

3000W fiber cutting speed

Cutting carbon steel by Oxygen							
Materials	Thickness(mm)	Gas	Cutting speed (m/min)				
Carbon steel	1	N ₂	40				
	2	N ₂ 20					
	3	O ₂	5.5				
	6	O ₂	2.7				
	8	O ₂	2.2				
	12	O ₂	1.1				
	16	O ₂	0.75				

2000W fiber cutting speed

Cutting carbon steel by Oxygen						
Steel	Thickness(mm)	Gas Cutting speed (m/min				
Carbon steel	1	N ₂	25			
	2	N ₂	9			
	3	O ₂	4.2			
	6	O ₂	1.8			
	8	O ₂	1.3			
	12	O ₂	0.9			
	16	O ₂	0.7			

Cutting stainless steel by nitrogen

Cutting stainless steel by nitrogen			Cutting stainless steel by nitrogen					
Materials	Thickness(mm)	Gas	Cutting speed (m/min)		Materials	Thickness(mm)	Gas	Cutting speed (m/min)
Stainless steel 304	1	N ₂	45		Stainless steel 304	1	N ₂	28
	1.5	N ₂	33			1.5	N ₂	15
	2	N ₂	24			2	N ₂	10
	3	N ₂	9			3	N ₂	5
	5	N ₂	3.6			4	N ₂	3
	6	N ₂	2.7			5	N_2	2
	8	N ₂	1.2			6	N_2	1.5